summaryrefslogtreecommitdiff
path: root/macros/symphonymat.sci
diff options
context:
space:
mode:
authorHarpreet2015-12-22 15:54:28 +0530
committerHarpreet2015-12-22 15:54:28 +0530
commit6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24 (patch)
tree9501c5e1123426ab0b91d2e668902bd2b8d2a356 /macros/symphonymat.sci
parent79583a44468943fad22ba1de2dd25dd86f7be167 (diff)
downloadsymphony-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.tar.gz
symphony-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.tar.bz2
symphony-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.zip
Bugs fixed 3
Diffstat (limited to 'macros/symphonymat.sci')
-rw-r--r--macros/symphonymat.sci36
1 files changed, 18 insertions, 18 deletions
diff --git a/macros/symphonymat.sci b/macros/symphonymat.sci
index 40b07eb..f7e08ac 100644
--- a/macros/symphonymat.sci
+++ b/macros/symphonymat.sci
@@ -13,24 +13,24 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// Solves a mixed integer linear programming constrained optimization problem in intlinprog format.
//
// Calling Sequence
- // xopt = symphonymat(f,intcon,A,b)
- // xopt = symphonymat(f,intcon,A,b,Aeq,beq)
- // xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub)
- // xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub,options)
+ // xopt = symphonymat(C,intcon,A,b)
+ // xopt = symphonymat(C,intcon,A,b,Aeq,beq)
+ // xopt = symphonymat(C,intcon,A,b,Aeq,beq,lb,ub)
+ // xopt = symphonymat(C,intcon,A,b,Aeq,beq,lb,ub,options)
// [xopt,fopt,status,output] = symphonymat( ... )
//
// Parameters
- // f : a vector of doubles, contains coefficients of the variables in the objective
+ // f : a vector of double, contains coefficients of the variables in the objective
// intcon : Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.
- // A : Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables
- // b : Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N
- // Aeq : Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables
- // beq : Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.
- // lb : Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
- // ub : Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
+ // A : Linear inequality constraint matrix, specified as a matrix of double. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables
+ // b : Linear inequality constraint vector, specified as a vector of double. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N
+ // Aeq : Linear equality constraint matrix, specified as a matrix of double. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables
+ // beq : Linear equality constraint vector, specified as a vector of double. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.
+ // lb : Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
+ // ub : Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
// options : a list containing the the parameters to be set.
// xopt : a vector of double, the computed solution of the optimization problem
- // fopt : a doubles, the function value at x
+ // fopt : a double, the function value at x
// status : status flag from symphony.
// output : The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.
//
@@ -41,7 +41,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
- // & f^T*x \\
+ // & C^T*x \\
// & \text{subject to} & A*x \leq b \\
// & & Aeq*x = beq \\
// & & lb \leq x \leq ub \\
@@ -53,7 +53,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
//
// Examples
// // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
+ // C = [350*5,330*3,310*4,280*6,500,450,400,100]';
// // Lower Bound of variable
// lb = repmat(0,1,8);
// // Upper Bound of variables
@@ -79,7 +79,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
// // x(j)=0 or 1
// // The function to be maximize i.e. P(j)
- // objCoef = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
+ // C = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
// 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
// 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
// 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
@@ -87,7 +87,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
// 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
// //Constraint Matrix
- // conMatrix = [ //Constraint 1
+ // A = [ //Constraint 1
// 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
// 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
// 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
@@ -129,7 +129,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
// ];
// nbVar = size(objCoef,1)
- // conUB=[11927 13727 11551 13056 13460 ];
+ // b=[11927 13727 11551 13056 13460 ];
// // Lower Bound of variables
// lb = repmat(0,1,nbVar)
// // Upper Bound of variables
@@ -148,7 +148,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// // Optimal value
// fopt = [ 24381 ]
// // Calling Symphony
- // [x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
+ // [x,f,status,output] = symphonymat(C,intcon,A,b,[],[],lb,ub,options);
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh