diff options
author | Harpreet | 2015-09-23 18:22:28 +0530 |
---|---|---|
committer | Harpreet | 2015-09-23 18:22:28 +0530 |
commit | e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2 (patch) | |
tree | a7dd948f18ddb1927d482a56b4a3b56486cb7e3d /help/en_US/qpipopt.xml | |
parent | 33bdd144438436b759bc8d0b0beba715f0e39e5d (diff) | |
download | symphony-e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2.tar.gz symphony-e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2.tar.bz2 symphony-e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2.zip |
qpipopt added
Diffstat (limited to 'help/en_US/qpipopt.xml')
-rw-r--r-- | help/en_US/qpipopt.xml | 145 |
1 files changed, 145 insertions, 0 deletions
diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml new file mode 100644 index 0000000..d93f758 --- /dev/null +++ b/help/en_US/qpipopt.xml @@ -0,0 +1,145 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from qpipopt.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="qpipopt" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>qpipopt</refname> + <refpurpose>Solves a linear quadratic problem.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB) + [xopt,fopt,exitflag,output,lamda] = qpipopt( ... ) + + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>nbVar :</term> + <listitem><para> a 1 x 1 matrix of doubles, number of variables</para></listitem></varlistentry> + <varlistentry><term>nbCon :</term> + <listitem><para> a 1 x 1 matrix of doubles, number of constraints</para></listitem></varlistentry> + <varlistentry><term>Q :</term> + <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry> + <varlistentry><term>p :</term> + <listitem><para> a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry> + <varlistentry><term>LB :</term> + <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry> + <varlistentry><term>UB :</term> + <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry> + <varlistentry><term>conMatrix :</term> + <listitem><para> a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix</para></listitem></varlistentry> + <varlistentry><term>conLB :</term> + <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.</para></listitem></varlistentry> + <varlistentry><term>conUB :</term> + <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.</para></listitem></varlistentry> + <varlistentry><term>xopt :</term> + <listitem><para> a 1xn matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry> + <varlistentry><term>fopt :</term> + <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry> + <varlistentry><term>exitflag :</term> + <listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry> + <varlistentry><term>output :</term> + <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry> + <varlistentry><term>lambda :</term> + <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Search the minimum of a constrained linear quadratic optimization problem specified by : +find the minimum of f(x) such that + </para> + <para> +<latex> +\begin{eqnarray} +&\mbox{min}_{x} +& 1/2*x'*Q*x + p'*x \\ +& \text{subject to} & conLB \leq C(x) \leq conUB \\ +& & lb \leq x \leq ub \\ +\end{eqnarray} +</latex> + </para> + <para> +We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by Andreas Wächter and Carl Laird. + </para> + <para> +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +//Find x in R^6 such that: + +conMatrix= [1,-1,1,0,3,1; +-1,0,-3,-4,5,6; +2,5,3,0,1,0 +0,1,0,1,2,-1; +-1,0,2,1,1,0]; +conLB=[1 2 3 -%inf -%inf]'; +conUB = [1 2 3 -1 2.5]'; +//with x between ci and cs: +lb=[-1000 -10000 0 -1000 -1000 -1000]; +ub=[10000 100 1.5 100 100 1000]; +//and minimize 0.5*x'*Q*x + p'*x with +p=[1;2;3;4;5;6]; Q=eye(6,6); +nbVar = 6; +nbCon = 5; +[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB) + + ]]></programlisting> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +//min. -8*x1 -16*x2 + x1^2 + 4* x2^2 +// such that +// x1 + x2 <= 5, +// x1 <= 3, +// x1 >= 0, +// x2 >= 0 +conMatrix= [1 1]; +conLB=[-%inf]; +conUB = [5]; +//with x between ci and cs: +lb=[0,0]; +ub=[3,%inf]; +//and minimize 0.5*x'*Q*x + p'*x with +p=[-8,-16]; +Q=[1,0;0,4]; +nbVar = 2; +nbCon = 1; +[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB) + + ]]></programlisting> +</refsection> + +<refsection> + <title>Authors</title> + <simplelist type="vert"> + <member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member> + </simplelist> +</refsection> +</refentry> |