summaryrefslogtreecommitdiff
path: root/help/en_US/qpipopt.xml
diff options
context:
space:
mode:
authorHarpreet2015-09-23 18:22:28 +0530
committerHarpreet2015-09-23 18:22:28 +0530
commite34332a406e4f3fba9b99c6f9ec5138edfcc6aa2 (patch)
treea7dd948f18ddb1927d482a56b4a3b56486cb7e3d /help/en_US/qpipopt.xml
parent33bdd144438436b759bc8d0b0beba715f0e39e5d (diff)
downloadsymphony-e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2.tar.gz
symphony-e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2.tar.bz2
symphony-e34332a406e4f3fba9b99c6f9ec5138edfcc6aa2.zip
qpipopt added
Diffstat (limited to 'help/en_US/qpipopt.xml')
-rw-r--r--help/en_US/qpipopt.xml145
1 files changed, 145 insertions, 0 deletions
diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml
new file mode 100644
index 0000000..d93f758
--- /dev/null
+++ b/help/en_US/qpipopt.xml
@@ -0,0 +1,145 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from qpipopt.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="qpipopt" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>qpipopt</refname>
+ <refpurpose>Solves a linear quadratic problem.</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
+ [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Parameters</title>
+ <variablelist>
+ <varlistentry><term>nbVar :</term>
+ <listitem><para> a 1 x 1 matrix of doubles, number of variables</para></listitem></varlistentry>
+ <varlistentry><term>nbCon :</term>
+ <listitem><para> a 1 x 1 matrix of doubles, number of constraints</para></listitem></varlistentry>
+ <varlistentry><term>Q :</term>
+ <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
+ <varlistentry><term>p :</term>
+ <listitem><para> a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
+ <varlistentry><term>LB :</term>
+ <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
+ <varlistentry><term>UB :</term>
+ <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
+ <varlistentry><term>conMatrix :</term>
+ <listitem><para> a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix</para></listitem></varlistentry>
+ <varlistentry><term>conLB :</term>
+ <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.</para></listitem></varlistentry>
+ <varlistentry><term>conUB :</term>
+ <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.</para></listitem></varlistentry>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> a 1xn matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
+ <varlistentry><term>output :</term>
+ <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <varlistentry><term>lambda :</term>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a constrained linear quadratic optimization problem specified by :
+find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; 1/2*x'*Q*x + p'*x \\
+&amp; \text{subject to} &amp; conLB \leq C(x) \leq conUB \\
+&amp; &amp; lb \leq x \leq ub \\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ </para>
+ <para>
+</para>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^6 such that:
+
+conMatrix= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0
+0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+conLB=[1 2 3 -%inf -%inf]';
+conUB = [1 2 3 -1 2.5]';
+//with x between ci and cs:
+lb=[-1000 -10000 0 -1000 -1000 -1000];
+ub=[10000 100 1.5 100 100 1000];
+//and minimize 0.5*x'*Q*x + p'*x with
+p=[1;2;3;4;5;6]; Q=eye(6,6);
+nbVar = 6;
+nbCon = 5;
+[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//min. -8*x1 -16*x2 + x1^2 + 4* x2^2
+// such that
+// x1 + x2 <= 5,
+// x1 <= 3,
+// x1 >= 0,
+// x2 >= 0
+conMatrix= [1 1];
+conLB=[-%inf];
+conUB = [5];
+//with x between ci and cs:
+lb=[0,0];
+ub=[3,%inf];
+//and minimize 0.5*x'*Q*x + p'*x with
+p=[-8,-16];
+Q=[1,0;0,4];
+nbVar = 2;
+nbCon = 1;
+[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
+ </simplelist>
+</refsection>
+</refentry>