1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
#+LaTeX_CLASS: beamer
#+LaTeX_CLASS_OPTIONS: [presentation]
#+BEAMER_FRAME_LEVEL: 1
#+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
#+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra)
#+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC
#+LaTeX_CLASS: beamer
#+LaTeX_CLASS_OPTIONS: [presentation]
#+LaTeX_HEADER: \usepackage[english]{babel} \usepackage{ae,aecompl}
#+LaTeX_HEADER: \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet}
#+LaTeX_HEADER: \usepackage{listings}
#+LaTeX_HEADER: \usepackage{amsmath}
#+LaTeX_HEADER:\lstset{language=Python, basicstyle=\ttfamily\bfseries,
#+LaTeX_HEADER: commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
#+LaTeX_HEADER: showstringspaces=false, keywordstyle=\color{blue}\bfseries}
#+TITLE:
#+AUTHOR: FOSSEE
#+EMAIL: info@fossee.in
#+DATE:
#+DESCRIPTION:
#+KEYWORDS:
#+LANGUAGE: en
#+OPTIONS: H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
#+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc
*
#+begin_latex
\begin{center}
\vspace{12pt}
\textcolor{blue}{\huge Matrices}
\end{center}
\vspace{18pt}
\begin{center}
\vspace{10pt}
\includegraphics[scale=0.95]{../images/fossee-logo.png}\\
\vspace{5pt}
\scriptsize Developed by FOSSEE Team, IIT-Bombay. \\
\scriptsize Funded by National Mission on Education through ICT\\
\scriptsize MHRD,Govt. of India\\
\includegraphics[scale=0.30]{../images/iitb-logo.png}\\
\end{center}
#+end_latex
* Objectives
At the end of this tutorial, you will be able to,
- Create matrices using data.
- Create matrices from lists.
- Do basic matrix operations like addition,multiplication.
- Perform operations to find out the --
- inverse of a matrix
- determinant of a matrix
- eigen values and eigen vectors of a matrix
- norm of a matrix
- singular value decomposition of a matrix.
* Pre-requisite
Spoken tutorial on -
- Getting started with Lists.
- Getting started with Arrays.
- Accessing parts of Arrays.
* Exercise 1
- Create a two dimensional matrix ~m3~ of order (2, 4) with
elements 5, 6, 7, 8, 9, 10, 11, 12.
* Recall from ~array~
The following functions can also be used with matrices
- ~identity(n)~
- creates an identity matrix of order ~nXn~
- ~zeros((m,n))~
- creates a matrix of order ~mXn~ with 0's
- ~zeros\_like(A)~
- creates a matrix with 0's similar to the shape of matrix ~A~
- ~ones((m,n))~
- creates a matrix of order ~mXn~ with 1's
- ~ones\_like(A)~
- creates a matrix with 1's similar to the shape of matrix ~A~
* Exercise 2 : Frobenius norm \& inverse
- Find out the Frobenius norm of inverse of a ~4 X 4~ matrix.
:
The matrix is
: m5 = arange(1,17).reshape(4,4)
- Inverse of A,
-
#+begin_latex
$A^{-1} = inv(A)$
#+end_latex
- Frobenius norm is defined as,
-
#+begin_latex
$||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}$
#+end_latex
* Exercise 3 : Infinity norm
- Find the infinity norm of the matrix ~im5~
:
- Infinity norm is defined as,
#+begin_latex
$max([\sum_{i} abs(a_{i})^2])$
#+end_latex
* ~norm()~ method
- Frobenius norm
: In []: norm(im5)
- Infinity norm
: In []: norm(im5, ord=inf)
* eigen values \& eigen vectors
eigen values and eigen vectors
- eig()
Only eigen values
- eigvals()
* Singular Value Decomposition (~svd~)
#+begin_latex
$M = U \Sigma V^*$
#+end_latex
- U, an ~mXm~ unitary matrix over K.
-
#+begin_latex
$\Sigma$
#+end_latex
, an ~mXn~ diagonal matrix with non-negative real numbers on diagonal.
-
#+begin_latex
$V^*$
#+end_latex
, an ~nXn~ unitary matrix over K, denotes the conjugate transpose of V.
- SVD of matrix ~m5~ can be found out as,
: In []: svd(m5)
* Summary
In this tutorial, we have learnt to,
- Create matrices using arrays.
- Add and multiply the elements of matrix.
- Find out the inverse of a matrix,using the function ``inv()''.
- Use the function ``det()'' to find the determinant of a matrix.
- Calculate the norm of a matrix using the for loop and also using
the function ``norm()''.
- Find out the eigen vectors and eigen values of a matrix, using
functions ``eig()'' and ``eigvals()''.
- Calculate singular value decomposition(SVD) of a matrix using the
function ``svd()''.
* Evaluation
1. A and B are two array objects. Element wise multiplication in
matrices are done by,
- A * B
- multiply(A, B)
- dot(A, B)
- element\_multiply(A,B)
2. ``eig(A)[ 1 ]'' and ``eigvals(A)'' are the same.
- True
- False
3. ``norm(A,ord='fro')'' is the same as ``norm(A)'' ?
- True
- False
* Solutions
1. A * B
2. False
3. True
*
#+begin_latex
\begin{block}{}
\begin{center}
\textcolor{blue}{\Large THANK YOU!}
\end{center}
\end{block}
\begin{block}{}
\begin{center}
For more Information, visit our website\\
\url{http://fossee.in/}
\end{center}
\end{block}
#+end_latex
|