summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--matrices/script.rst193
-rw-r--r--matrices/slides.org115
-rw-r--r--matrices/slides.tex280
3 files changed, 278 insertions, 310 deletions
diff --git a/matrices/script.rst b/matrices/script.rst
index 30a2856..a337605 100644
--- a/matrices/script.rst
+++ b/matrices/script.rst
@@ -31,36 +31,44 @@
Language Reviewer : Bhanukiran
Checklist OK? : <11-11-2010, Anand, OK> [2010-10-05]
-.. #[punch: please mark the exercises, using the syntax we decided upon.]
========
Matrices
========
-{{{ show the welcome slide }}}
-Welcome to the spoken tutorial on Matrices.
+{{{ Show the first slide containing title, name of the production
+team along with the logo of MHRD }}}
-{{{ switch to next slide, outline slide }}}
+Hello friends and welcome to the tutorial on 'Matrices'.
-In this tutorial we will learn about matrices, creating matrices using
-direct data, converting a list and matrix operations. Finding
-inverse of a matrix, determinant of a matrix, eigen values and eigen
-vectors of a matrix, norm and singular value decomposition of
-matrices.
+{{{ switch to slide with objectives }}}
-{{{ creating a matrix }}}
+At the end of this tutorial, you will be able to,
+
+ 1. Create matrices using data.
+ #. Create matrices from lists.
+ #. Do basic matrix operations like addition,multiplication.
+ #. Perform operations to find out the --
+ - inverse of a matrix
+ - determinant of a matrix
+ - eigen values and eigen vectors of a matrix
+ - norm of a matrix
+ - singular value decomposition of a matrix.
+
+{{{ Switch to the pre-requisite slide }}}
+
+Before beginning this tutorial,we would suggest you to complete the
+tutorial on "Getting started with lists", "Getting started with arrays",
+"Accessing parts of arrays".
All matrix operations are done using arrays. Thus all the operations
on arrays are valid on matrices also. A matrix may be created as,
::
+ ipython -pylab
m1 = array([1,2,3,4])
-
-.. #[Puneeth: don't use ``matrix``. Use ``array``. The whole script will
-.. have to be fixed.]
-
-Using the method ``shape`` we can find out the shape or size of the
+Using the method ``shape``, we can find out the shape or size of the
matrix,
::
@@ -75,12 +83,12 @@ A list can be converted to a matrix as follows,
l1 = [[1,2,3,4],[5,6,7,8]]
m2 = array(l1)
-{{{ switch to next slide, exercise 1}}}
+Pause the video here, try out the following exercise and resume the video.
-Pause here and create a two dimensional matrix m3 of order 2 by 4 with
-elements 5, 6, 7, 8, 9, 10, 11, 12.
+{{{ switch to slide, exercise 1}}}
-{{{ switch to next slide, solution }}}
+Create a two dimensional matrix m3 of order 2 by 4 with
+elements 5, 6, 7, 8, 9, 10, 11, 12.
m3 can be created as,
::
@@ -89,22 +97,21 @@ m3 can be created as,
{{{ switch to next slide, matrix operations }}}
-We can do matrix addition and subtraction as,
+We can do matrix addition and subtraction easily.
::
m3 + m2
-does element by element addition, thus matrix addition.
+m3+m2 does element by element addition, that is matrix addition.
Similarly,
::
m3 - m2
-it does matrix subtraction, that is element by element
-subtraction. Now let us try,
-
-{{{ Switch to next slide, Matrix multiplication }}}
+Similarly,m3-m2 does matrix subtraction, that is element by element
+subtraction.
+Now let us try,matrix multiplication
::
m3 * m2
@@ -120,8 +127,6 @@ And matrix multiplication in matrices are done using the function ``dot()``
but due to size mismatch the multiplication could not be done and it
returned an error,
-{{{ switch to next slide, Matrix multiplication (cont'd) }}}
-
Now let us see an example for matrix multiplication. For doing matrix
multiplication we need to have two matrices of the order n by m and m
by r and the resulting matrix will be of the order n by r. Thus let us
@@ -130,7 +135,7 @@ first create two matrices which are compatible for multiplication.
m1.shape
-matrix m1 is of the shape one by four, let us create another one of
+matrix m1 is of the shape one by four, let us create another one, of
the order four by two,
::
@@ -141,15 +146,14 @@ thus the function ``dot()`` can be used for matrix multiplication.
{{{ switch to next slide, recall from arrays }}}
-As we already saw in arrays, the functions ``identity()`` which
-creates an identity matrix of the order n by n, ``zeros()`` which
-creates a matrix of the order m by n with all zeros, ``zeros_like()``
-which creates a matrix with zeros with the shape of the matrix passed,
-``ones()`` which creates a matrix of order m by n with all ones,
-``ones_like()`` which creates a matrix with ones with the shape of the
-matrix passed. These functions can also be used with matrices.
-
-{{{ switch to next slide, more matrix operations }}}
+As we already learnt in arrays, the function ``identity()`` which
+creates an identity matrix of the order n by n, the function ``zeros()``
+which creates a matrix of the order m by n with all zeros, the function
+``zeros_like()`` which creates a matrix with zeros with the shape of
+the matrix passed, the function ``ones()`` which creates a matrix of
+order m by n with all ones, the function ``ones_like()`` which creates a
+matrix with ones with the shape of the matrix passed; all these
+functions can also be used with matrices.
To find out the transpose of a matrix we can do,
::
@@ -161,8 +165,6 @@ Matrix name dot capital T will give the transpose of a matrix
{{{ switch to next slide, Frobenius norm of inverse of matrix }}}
-.. #[punch: arange has not been introduced.]
-
Now let us try to find out the Frobenius norm of inverse of a 4 by 4
matrix, the matrix being,
::
@@ -170,23 +172,17 @@ matrix, the matrix being,
m5 = arange(1,17).reshape(4,4)
print m5
-The inverse of a matrix A, A raise to minus one is also called the
-reciprocal matrix such that A multiplied by A inverse will give 1. The
+The inverse of a matrix A, A raise to minus one, is also called the
+reciprocal matrix, such that A multiplied by A inverse will give 1. The
Frobenius norm of a matrix is defined as square root of sum of squares
-of elements in the matrix. Pause here and try to solve the problem
-yourself, the inverse of a matrix can be found using the function
-``inv(A)``.
+of elements in the matrix. The inverse of a matrix can be found using the
+function ``inv(A)``.
And here is the solution, first let us find the inverse of matrix m5.
::
im5 = inv(m5)
-.. #[punch: we don't need to show this way of calculating the norm, do
-.. we? even if we do, we should show it in the "array style".
-.. something like:
-.. sqrt(sum(each * each))]
-
And the Frobenius norm of the matrix ``im5`` can be found out as,
::
@@ -196,11 +192,10 @@ And the Frobenius norm of the matrix ``im5`` can be found out as,
print sqrt(sum)
{{{ switch to next slide, infinity norm }}}
-.. #[punch: similarly for this section.]
-Now try to find out the infinity norm of the matrix im5. The infinity
-norm of a matrix is defined as the maximum value of sum of the
-absolute of elements in each row. Pause here and try to solve the
+Now let us move on to find out the infinity norm of the matrix im5.
+The infinity norm of a matrix is defined as the maximum value of sum of
+the absolute of elements in each row. Pause here and try to solve the
problem yourself.
@@ -229,42 +224,39 @@ And to find out the Infinity norm of the matrix im5, we do,
norm(im5,ord=inf)
-This is easier when compared to the code we wrote. Do ``norm``
-question mark to read up more about ord and the possible type of norms
+This is easier when compared to the code we wrote. Read the documentation
+of ``norm`` to read up more about ord and the possible type of norms
the norm function produces.
-{{{ switch to next slide, determinant }}}
-
Now let us find out the determinant of a the matrix m5.
-The determinant of a square matrix can be obtained using the function
+The determinant of a square matrix can be obtained by using the function
``det()`` and the determinant of m5 can be found out as,
::
det(m5)
+Hence we get the determinant.
+
{{{ switch to next slide, eigen vectors and eigen values }}}
The eigen values and eigen vector of a square matrix can be computed
using the function ``eig()`` and ``eigvals()``.
Let us find out the eigen values and eigen vectors of the matrix
-m5. We can do it as,
+m5. We find them as,
::
eig(m5)
-
-.. #[punch: has the tuple word been introduced?]
-
Note that it returned a tuple of two matrices. The first element in
the tuple are the eigen values and the second element in the tuple are
-the eigen vectors. Thus the eigen values are,
+the eigen vectors. Thus the eigen values are given by,
::
eig(m5)[0]
-and the eigen vectors are,
+and the eigen vectors are given by,
::
eig(m5)[1]
@@ -279,15 +271,15 @@ The eigen values can also be computed using the function ``eigvals()`` as,
Now let us learn how to do the singular value decomposition or S V D
of a matrix.
-Suppose M is an m×n matrix whose entries come from the field K, which
+Suppose M is an m×n matrix, whose entries come from the field K, which
is either the field of real numbers or the field of complex
numbers. Then there exists a factorization of the form
M = U\Sigma V star
where U is an (m by m) unitary matrix over K, the matrix \Sigma is an
-(m by n) diagonal matrix with nonnegative real numbers on the
-diagonal, and V*, an (n by n) unitary matrix over K, denotes the
+(m by n) diagonal matrix with non-negative real numbers on the
+diagonal, and V* is an (n by n) unitary matrix over K,which denotes the
conjugate transpose of V. Such a factorization is called the
singular-value decomposition of M.
@@ -299,21 +291,62 @@ The SVD of matrix m5 can be found as
Notice that it returned a tuple of 3 elements. The first one U the
next one Sigma and the third one V star.
-{{{ switch to next slide, recap slide }}}
+{{{ switch to summary slide }}}
-So this brings us to the end of this tutorial. In this tutorial, we
-learned about matrices, creating matrices, matrix operations, inverse
-of matrices, determinant, norm, eigen values and vectors and singular
-value decomposition of matrices.
+This brings us to the end of the end of this tutorial.In this tutorial,
+we have learnt to,
-{{{ switch to next slide, thank you }}}
+ 1. Create matrices using arrays.
+ #. Add,subtract and multiply the elements of matrix.
+ #. Find out the inverse of a matrix,using the function ``inv()``.
+ #. Use the function ``det()`` to find the determinant of a matrix.
+ #. Calculate the norm of a matrix using the for loop and also using
+ the function ``norm()``.
+ #. Find out the eigen vectors and eigen values of a matrix, using
+ functions ``eig()`` and ``eigvals()``.
+ #. Calculate singular value decomposition(SVD) of a matrix using the
+ function ``svd()``.
+{{{Show self assessment questions slide}}}
+
+Here are some self assessment questions for you to solve
+
+1. A and B are two array objects. Element wise multiplication in
+ matrices are done by,
+
+ - A * B
+ - ``multiply(A, B)``
+ - ``dot(A, B)``
+ - ``element_multiply(A,B)``
+
+2. ``eig(A)[1]`` and ``eigvals(A)`` are the same.
+
+ - True
+ - False
+
+3. ``norm(A,ord='fro')`` is the same as ``norm(A)`` ?
+
+ - True
+ - False
+
+{{{solution of self assessment questions on slide}}}
+
+And the answers,
+
+1. Element wise multiplication between two matrices, A and B is done as,
+ A * B
+
+2. False.
+ ``eig(A)[0]`` and ``eigvals(A)`` are same, that is both will give the
+ eigen values of matrrix A.
+
+3. ``norm(A,ord='fro')`` and ``norm(A)`` are same, since the order='fro'
+ stands for frobenius norm. Hence true.
+
+
+{{{ switch to Thank you slide }}}
+
+Hope you have enjoyed this tutorial and found it useful.
Thank you!
-..
- Local Variables:
- mode: rst
- indent-tabs-mode: nil
- sentence-end-double-space: nil
- fill-column: 70
- End:
+
diff --git a/matrices/slides.org b/matrices/slides.org
index b7f56f2..4be93d2 100644
--- a/matrices/slides.org
+++ b/matrices/slides.org
@@ -18,9 +18,9 @@
#+LaTeX_HEADER: commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
#+LaTeX_HEADER: showstringspaces=false, keywordstyle=\color{blue}\bfseries}
-#+TITLE: Matrices
-#+AUTHOR: FOSSEE
-#+EMAIL:
+#+TITLE:
+#+AUTHOR: FOSSEE
+#+EMAIL: info@fossee.in
#+DATE:
#+DESCRIPTION:
@@ -29,17 +29,40 @@
#+OPTIONS: H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
#+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc
-* Outline
- - Creating Matrices
- - using direct data
- - converting a list
- - Matrix operations
- - Inverse of matrix
- - Determinant of matrix
- - Eigen values and Eigen vectors of matrices
- - Norm of matrix
- - Singular Value Decomposition of matrices
+*
+#+begin_latex
+\begin{center}
+\vspace{12pt}
+\textcolor{blue}{\huge Matrices}
+\end{center}
+\vspace{18pt}
+\begin{center}
+\vspace{10pt}
+\includegraphics[scale=0.95]{../images/fossee-logo.png}\\
+\vspace{5pt}
+\scriptsize Developed by FOSSEE Team, IIT-Bombay. \\
+\scriptsize Funded by National Mission on Education through ICT\\
+\scriptsize MHRD,Govt. of India\\
+\includegraphics[scale=0.30]{../images/iitb-logo.png}\\
+\end{center}
+#+end_latex
+* Objectives
+ At the end of this tutorial, you will be able to,
+ - Create matrices using data.
+ - Create matrices from lists.
+ - Do basic matrix operations like addition,multiplication.
+ - Perform operations to find out the --
+ - inverse of a matrix
+ - determinant of a matrix
+ - eigen values and eigen vectors of a matrix
+ - norm of a matrix
+ - singular value decomposition of a matrix.
+* Pre-requisite
+ Spoken tutorial on -
+ - Getting started with Lists.
+ - Getting started with Arrays.
+ - Accessing parts of Arrays.
* Creating a matrix
- Creating a matrix using direct data
: In []: m1 = array([1, 2, 3, 4])
@@ -49,31 +72,13 @@
* Exercise 1
Create a (2, 4) matrix ~m3~
: m3 = [[5, 6, 7, 8],
- : [9, 10, 11, 12]]
-* Solution 1
- - m3 can be created as,
- : In []: m3 = array([[5,6,7,8],[9,10,11,12]])
-
+ : [9, 10, 11, 12
* Matrix operations
- Element-wise addition (both matrix should be of order ~mXn~)
: In []: m3 + m2
- Element-wise subtraction (both matrix should be of order ~mXn~)
: In []: m3 - m2
-* Matrix Multiplication
- - Element-wise multiplication using ~m3 * m2~
- : In []: m3 * m2
- - Matrix Multiplication using ~dot(m3, m2)~
- : In []: dot(m3, m2)
- : Out []: ValueError: objects are not aligned
-* Matrix Multiplication (cont'd)
- - Create two compatible matrices of order ~nXm~ and ~mXr~
- : In []: m1.shape
- - matrix m1 is of order ~1 X 4~
- - Creating another matrix of order ~4 X 2~
- : In []: m4 = array([[1,2],[3,4],[5,6],[7,8]])
- - Matrix multiplication
- : In []: dot(m1, m4)
* Recall from ~array~
- The functions
- ~identity(n)~ -
@@ -87,12 +92,8 @@
- ~ones_like(A)~
creates a matrix with 1's similar to the shape of matrix ~A~
Can also be used with matrices
-
-* More matrix operations
- Transpose of a matrix
- : In []: m4.T
* Exercise 2 : Frobenius norm \& inverse
- Find out the Frobenius norm of inverse of a ~4 X 4~ matrix.
+ Find out the Frobenius norm of inverse of a ~4 X 4~ matrix.
:
The matrix is
: m5 = arange(1,17).reshape(4,4)
@@ -106,7 +107,6 @@
#+begin_latex
$||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}$
#+end_latex
-
* Exercise 3 : Infinity norm
Find the infinity norm of the matrix ~im5~
:
@@ -119,11 +119,6 @@
: In []: norm(im5)
- Infinity norm
: In []: norm(im5, ord=inf)
-* Determinant
- Find out the determinant of the matrix m5
- :
- - determinant can be found out using
- - ~det(A)~ - returns the determinant of matrix ~A~
* eigen values \& eigen vectors
Find out the eigen values and eigen vectors of the matrix ~m5~.
:
@@ -154,28 +149,30 @@
- SVD of matrix ~m5~ can be found out as,
: In []: svd(m5)
* Summary
- - Matrices
- - creating matrices
- - Matrix operations
- - Inverse (~inv()~)
- - Determinant (~det()~)
- - Norm (~norm()~)
- - Eigen values \& vectors (~eig(), eigvals()~)
- - Singular Value Decomposition (~svd()~)
+ In this tutorial, we have learnt to,
-* Thank you!
+ - Create matrices using arrays.
+ - Add and multiply the elements of matrix.
+ - Find out the inverse of a matrix,using the function ``inv()``.
+ - Use the function ``det()`` to find the determinant of a matrix.
+ - Calculate the norm of a matrix using the for loop and also using
+ the function ``norm()``.
+ - Find out the eigen vectors and eigen values of a matrix, using
+ functions ``eig()`` and ``eigvals()``.
+ - Calculate singular value decomposition(SVD) of a matrix using the
+ function ``svd()``.
+
+*
#+begin_latex
\begin{block}{}
\begin{center}
- This spoken tutorial has been produced by the
- \textcolor{blue}{FOSSEE} team, which is funded by the
+ \textcolor{blue}{\Large THANK YOU!}
\end{center}
+ \end{block}
+\begin{block}{}
\begin{center}
- \textcolor{blue}{National Mission on Education through \\
- Information \& Communication Technology \\
- MHRD, Govt. of India}.
+ For more Information, visit our website\\
+ \url{http://fossee.in/}
\end{center}
\end{block}
#+end_latex
-
-
diff --git a/matrices/slides.tex b/matrices/slides.tex
index e0e8acd..47ab0ad 100644
--- a/matrices/slides.tex
+++ b/matrices/slides.tex
@@ -1,4 +1,4 @@
-% Created 2010-11-07 Sun 16:18
+% Created 2011-06-06 Mon 13:56
\documentclass[presentation]{beamer}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
@@ -8,7 +8,6 @@
\usepackage{float}
\usepackage{wrapfig}
\usepackage{soul}
-\usepackage{t1enc}
\usepackage{textcomp}
\usepackage{marvosym}
\usepackage{wasysym}
@@ -24,14 +23,14 @@ commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
showstringspaces=false, keywordstyle=\color{blue}\bfseries}
\providecommand{\alert}[1]{\textbf{#1}}
-\title{Matrices}
+\title{}
\author{FOSSEE}
\date{}
\usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
\begin{document}
-\maketitle
+
@@ -42,41 +41,71 @@ showstringspaces=false, keywordstyle=\color{blue}\bfseries}
\begin{frame}
-\frametitle{Outline}
-\label{sec-1}
-\begin{itemize}
-\item Creating Matrices
+\begin{center}
+\vspace{12pt}
+\textcolor{blue}{\huge Matrices}
+\end{center}
+\vspace{18pt}
+\begin{center}
+\vspace{10pt}
+\includegraphics[scale=0.95]{../images/fossee-logo.png}\\
+\vspace{5pt}
+\scriptsize Developed by FOSSEE Team, IIT-Bombay. \\
+\scriptsize Funded by National Mission on Education through ICT\\
+\scriptsize MHRD,Govt. of India\\
+\includegraphics[scale=0.30]{../images/iitb-logo.png}\\
+\end{center}
+\end{frame}
+\begin{frame}
+\frametitle{Objectives}
+\label{sec-2}
+
+ At the end of this tutorial, you will be able to,
+
+\begin{itemize}
+\item Create matrices using data.
+\item Create matrices from lists.
+\item Do basic matrix operations like addition,multiplication.
+\item Perform operations to find out the --
\begin{itemize}
-\item using direct data
-\item converting a list
+\item inverse of a matrix
+\item determinant of a matrix
+\item eigen values and eigen vectors of a matrix
+\item norm of a matrix
+\item singular value decomposition of a matrix.
\end{itemize}
+\end{itemize}
+\end{frame}
+\begin{frame}
+\frametitle{Pre-requisite}
+\label{sec-3}
-\item Matrix operations
-\item Inverse of matrix
-\item Determinant of matrix
-\item Eigen values and Eigen vectors of matrices
-\item Norm of matrix
-\item Singular Value Decomposition of matrices
+ Spoken tutorial on -
+
+\begin{itemize}
+\item Getting started with Lists.
+\item Getting started with Arrays.
+\item Accessing parts of Arrays.
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Creating a matrix}
-\label{sec-2}
+\label{sec-4}
+
\begin{itemize}
\item Creating a matrix using direct data
\end{itemize}
-
\begin{verbatim}
In []: m1 = array([1, 2, 3, 4])
\end{verbatim}
+
\begin{itemize}
\item Creating a matrix using lists
\end{itemize}
-
\begin{verbatim}
In []: l1 = [[1,2,3,4],[5,6,7,8]]
In []: m2 = array(l1)
@@ -84,126 +113,59 @@ showstringspaces=false, keywordstyle=\color{blue}\bfseries}
\end{frame}
\begin{frame}[fragile]
\frametitle{Exercise 1}
-\label{sec-3}
+\label{sec-5}
- Create a (2, 4) matrix \texttt{m3}
+ Create a (2, 4) matrix \verb~m3~
\begin{verbatim}
m3 = [[5, 6, 7, 8],
- [9, 10, 11, 12]]
-\end{verbatim}
-\end{frame}
-\begin{frame}[fragile]
-\frametitle{Solution 1}
-\label{sec-4}
-
-\begin{itemize}
-\item m3 can be created as,
-\end{itemize}
-
-\begin{verbatim}
- In []: m3 = array([[5,6,7,8],[9,10,11,12]])
+ [9, 10, 11, 12
\end{verbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix operations}
-\label{sec-5}
+\label{sec-6}
+
\begin{itemize}
-\item Element-wise addition (both matrix should be of order \texttt{mXn})
+\item Element-wise addition (both matrix should be of order \verb~mXn~)
\begin{verbatim}
In []: m3 + m2
\end{verbatim}
-\item Element-wise subtraction (both matrix should be of order \texttt{mXn})
+\item Element-wise subtraction (both matrix should be of order \verb~mXn~)
\begin{verbatim}
In []: m3 - m2
\end{verbatim}
\end{itemize}
\end{frame}
-\begin{frame}[fragile]
-\frametitle{Matrix Multiplication}
-\label{sec-6}
-
-\begin{itemize}
-\item Element-wise multiplication using \texttt{m3 * m2}
-\begin{verbatim}
- In []: m3 * m2
-\end{verbatim}
-
-\item Matrix Multiplication using \texttt{dot(m3, m2)}
-\begin{verbatim}
- In []: dot(m3, m2)
- Out []: ValueError: objects are not aligned
-\end{verbatim}
-
-\end{itemize}
-\end{frame}
-\begin{frame}[fragile]
-\frametitle{Matrix Multiplication (cont'd)}
+\begin{frame}
+\frametitle{Recall from \verb~array~}
\label{sec-7}
-\begin{itemize}
-\item Create two compatible matrices of order \texttt{nXm} and \texttt{mXr}
-\begin{verbatim}
- In []: m1.shape
-\end{verbatim}
-
-
-\begin{itemize}
-\item matrix m1 is of order \texttt{1 X 4}
-\end{itemize}
-
-\item Creating another matrix of order \texttt{4 X 2}
-\begin{verbatim}
- In []: m4 = array([[1,2],[3,4],[5,6],[7,8]])
-\end{verbatim}
-
-\item Matrix multiplication
-\begin{verbatim}
- In []: dot(m1, m4)
-\end{verbatim}
-
-\end{itemize}
-\end{frame}
-\begin{frame}
-\frametitle{Recall from \texttt{array}}
-\label{sec-8}
\begin{itemize}
\item The functions
-
\begin{itemize}
-\item \texttt{identity(n)} -
- creates an identity matrix of order \texttt{nXn}
-\item \texttt{zeros((m,n))} -
- creates a matrix of order \texttt{mXn} with 0's
-\item \texttt{zeros\_like(A)} -
- creates a matrix with 0's similar to the shape of matrix \texttt{A}
-\item \texttt{ones((m,n))}
- creates a matrix of order \texttt{mXn} with 1's
-\item \texttt{ones\_like(A)}
- creates a matrix with 1's similar to the shape of matrix \texttt{A}
+\item \verb~identity(n)~ -
+ creates an identity matrix of order \verb~nXn~
+\item \verb~zeros((m,n))~ -
+ creates a matrix of order \verb~mXn~ with 0's
+\item \verb~zeros_like(A)~ -
+ creates a matrix with 0's similar to the shape of matrix \verb~A~
+\item \verb~ones((m,n))~
+ creates a matrix of order \verb~mXn~ with 1's
+\item \verb~ones_like(A)~
+ creates a matrix with 1's similar to the shape of matrix \verb~A~
\end{itemize}
-
\end{itemize}
-
Can also be used with matrices
\end{frame}
\begin{frame}[fragile]
-\frametitle{More matrix operations}
-\label{sec-9}
-
- Transpose of a matrix
-\begin{verbatim}
- In []: m4.T
-\end{verbatim}
-\end{frame}
-\begin{frame}[fragile]
\frametitle{Exercise 2 : Frobenius norm \& inverse}
-\label{sec-10}
+\label{sec-8}
- Find out the Frobenius norm of inverse of a \texttt{4 X 4} matrix.
+ Find out the Frobenius norm of inverse of a \verb~4 X 4~ matrix.
\begin{verbatim}
\end{verbatim}
@@ -213,38 +175,37 @@ showstringspaces=false, keywordstyle=\color{blue}\bfseries}
m5 = arange(1,17).reshape(4,4)
\end{verbatim}
+
\begin{itemize}
\item Inverse of A,
-
\begin{itemize}
\item $A^{-1} = inv(A)$
\end{itemize}
-
\item Frobenius norm is defined as,
-
\begin{itemize}
\item $||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}$
\end{itemize}
-
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Exercise 3 : Infinity norm}
-\label{sec-11}
+\label{sec-9}
- Find the infinity norm of the matrix \texttt{im5}
+ Find the infinity norm of the matrix \verb~im5~
\begin{verbatim}
\end{verbatim}
+
\begin{itemize}
\item Infinity norm is defined as,
$max([\sum_{i} abs(a_{i})^2])$
\end{itemize}
\end{frame}
\begin{frame}[fragile]
-\frametitle{\texttt{norm()} method}
-\label{sec-12}
+\frametitle{\verb~norm()~ method}
+\label{sec-10}
+
\begin{itemize}
\item Frobenius norm
@@ -260,32 +221,15 @@ showstringspaces=false, keywordstyle=\color{blue}\bfseries}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Determinant}
-\label{sec-13}
-
- Find out the determinant of the matrix m5
-\begin{verbatim}
-
-\end{verbatim}
-
-\begin{itemize}
-\item determinant can be found out using
-
-\begin{itemize}
-\item \texttt{det(A)} - returns the determinant of matrix \texttt{A}
-\end{itemize}
-
-\end{itemize}
-\end{frame}
-\begin{frame}[fragile]
\frametitle{eigen values \& eigen vectors}
-\label{sec-14}
+\label{sec-11}
- Find out the eigen values and eigen vectors of the matrix \texttt{m5}.
+ Find out the eigen values and eigen vectors of the matrix \verb~m5~.
\begin{verbatim}
\end{verbatim}
+
\begin{itemize}
\item eigen values and vectors can be found out using
\begin{verbatim}
@@ -294,18 +238,14 @@ showstringspaces=false, keywordstyle=\color{blue}\bfseries}
returns a tuple of \emph{eigen values} and \emph{eigen vectors}
\item \emph{eigen values} in tuple
-
\begin{itemize}
-\item \texttt{In []: eig(m5)[0]}
+\item \verb~In []: eig(m5)[0]~
\end{itemize}
-
\item \emph{eigen vectors} in tuple
-
\begin{itemize}
-\item \texttt{In []: eig(m5)[1]}
+\item \verb~In []: eig(m5)[1]~
\end{itemize}
-
-\item Computing \emph{eigen values} using \texttt{eigvals()}
+\item Computing \emph{eigen values} using \verb~eigvals()~
\begin{verbatim}
In []: eigvals(m5)
\end{verbatim}
@@ -313,59 +253,57 @@ showstringspaces=false, keywordstyle=\color{blue}\bfseries}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Singular Value Decomposition (\texttt{svd})}
-\label{sec-15}
+\frametitle{Singular Value Decomposition (\verb~svd~)}
+\label{sec-12}
$M = U \Sigma V^*$
+
\begin{itemize}
-\item U, an \texttt{mXm} unitary matrix over K.
+\item U, an \verb~mXm~ unitary matrix over K.
\item $\Sigma$
- , an \texttt{mXn} diagonal matrix with non-negative real numbers on diagonal.
+ , an \verb~mXn~ diagonal matrix with non-negative real numbers on diagonal.
\item $V^*$
- , an \texttt{nXn} unitary matrix over K, denotes the conjugate transpose of V.
-\item SVD of matrix \texttt{m5} can be found out as,
+ , an \verb~nXn~ unitary matrix over K, denotes the conjugate transpose of V.
+\item SVD of matrix \verb~m5~ can be found out as,
\end{itemize}
-
\begin{verbatim}
In []: svd(m5)
\end{verbatim}
\end{frame}
\begin{frame}
\frametitle{Summary}
-\label{sec-16}
+\label{sec-13}
-\begin{itemize}
-\item Matrices
+ In this tutorial, we have learnt to,
-\begin{itemize}
-\item creating matrices
-\end{itemize}
-\item Matrix operations
-\item Inverse (\texttt{inv()})
-\item Determinant (\texttt{det()})
-\item Norm (\texttt{norm()})
-\item Eigen values \& vectors (\texttt{eig(), eigvals()})
-\item Singular Value Decomposition (\texttt{svd()})
+\begin{itemize}
+\item Create matrices using arrays.
+\item Add and multiply the elements of matrix.
+\item Find out the inverse of a matrix,using the function ``inv()``.
+\item Use the function ``det()`` to find the determinant of a matrix.
+\item Calculate the norm of a matrix using the for loop and also using
+ the function ``norm()``.
+\item Find out the eigen vectors and eigen values of a matrix, using
+ functions ``eig()`` and ``eigvals()``.
+\item Calculate singular value decomposition(SVD) of a matrix using the
+ function ``svd()``.
\end{itemize}
+
\end{frame}
\begin{frame}
-\frametitle{Thank you!}
-\label{sec-17}
\begin{block}{}
\begin{center}
- This spoken tutorial has been produced by the
- \textcolor{blue}{FOSSEE} team, which is funded by the
+ \textcolor{blue}{\Large THANK YOU!}
\end{center}
+ \end{block}
+\begin{block}{}
\begin{center}
- \textcolor{blue}{National Mission on Education through \\
- Information \& Communication Technology \\
- MHRD, Govt. of India}.
+ For more Information, visit our website\\
+ \url{http://fossee.in/}
\end{center}
\end{block}
-
-
\end{frame}
-\end{document}
+\end{document} \ No newline at end of file