summaryrefslogtreecommitdiff
path: root/statistics.txt
diff options
context:
space:
mode:
authorSantosh G. Vattam2010-03-30 14:45:12 +0530
committerSantosh G. Vattam2010-03-30 14:45:12 +0530
commitfd65842b0be72d2c2f502fbcb34ba3c77a8ac528 (patch)
tree03fa6a2b432ea9063a5887692353f36d611bcaed /statistics.txt
parentec4c91f86cb46fccdcfecd0cd0586cd8c5b92f17 (diff)
downloadst-scripts-fd65842b0be72d2c2f502fbcb34ba3c77a8ac528.tar.gz
st-scripts-fd65842b0be72d2c2f502fbcb34ba3c77a8ac528.tar.bz2
st-scripts-fd65842b0be72d2c2f502fbcb34ba3c77a8ac528.zip
Added statistics.txt.
Diffstat (limited to 'statistics.txt')
-rw-r--r--statistics.txt52
1 files changed, 52 insertions, 0 deletions
diff --git a/statistics.txt b/statistics.txt
new file mode 100644
index 0000000..c9f4241
--- /dev/null
+++ b/statistics.txt
@@ -0,0 +1,52 @@
+Hello welcome to the tutorial on statistics and dictionaries in Python.
+
+In the previous tutorial we saw the `for' loop and lists. Here we shall look into
+calculating mean for the same pendulum experiment and then move on to calculate
+the mean, median and mode for a very large data set.
+
+
+In []: g_list = []
+In []: for line in open('pendulum.txt'):
+ .... point = line.split()
+ .... L = float(point[0])
+ .... t = float(point[1])
+ .... g = 4 * pi * pi * L / (t * t)
+ .... g_list.append(g)
+
+In []: total = 0
+In []: for g in g_list:
+ ....: total += g
+ ....:
+
+In []: g_mean = total / len(g_list)
+In []: print 'Mean: ', g_mean
+
+In []: g_mean = sum(g_list) / len(g_list)
+In []: print 'Mean: ', g_mean
+
+In []: g_mean = mean(g_list)
+In []: print 'Mean: ', g_mean
+
+
+In []: d = {'png' : 'image file',
+ 'txt' : 'text file',
+ 'py' : 'python code'
+ 'java': 'bad code',
+ 'cpp': 'complex code'}
+
+In []: d['txt']
+Out[]: 'text file'
+
+In []: 'py' in d
+Out[]: True
+
+In []: 'jpg' in d
+Out[]: False
+
+In []: d.keys()
+Out[]: ['cpp', 'py', 'txt', 'java', 'png']
+
+In []: d.values()
+Out[]: ['complex code', 'python code',
+ 'text file', 'bad code',
+ 'image file']