diff options
author | Puneeth Chaganti | 2010-11-11 03:00:35 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2010-11-11 03:00:35 +0530 |
commit | 8719bc60eaeed46d6e747d6f38fadb75b5b01a16 (patch) | |
tree | ee6e6b96d687b4bd448a7883c67491cf9407b580 /getting-started-with-symbolics/slides.org | |
parent | 822f9277ca6982a63ee8185c6d6715728e28af5b (diff) | |
parent | 5ac4b69d7a3f286c021245192ef57069b0baa6ee (diff) | |
download | st-scripts-8719bc60eaeed46d6e747d6f38fadb75b5b01a16.tar.gz st-scripts-8719bc60eaeed46d6e747d6f38fadb75b5b01a16.tar.bz2 st-scripts-8719bc60eaeed46d6e747d6f38fadb75b5b01a16.zip |
Merged heads.
Diffstat (limited to 'getting-started-with-symbolics/slides.org')
-rw-r--r-- | getting-started-with-symbolics/slides.org | 46 |
1 files changed, 20 insertions, 26 deletions
diff --git a/getting-started-with-symbolics/slides.org b/getting-started-with-symbolics/slides.org index 5ac2471..5d9391e 100644 --- a/getting-started-with-symbolics/slides.org +++ b/getting-started-with-symbolics/slides.org @@ -37,14 +37,14 @@ - Defining Symbolic functions. - Simplifying and solving symbolic expressions and functions. -* Questions 1 +* Question 1 - Define the following expression as symbolic expression in sage. - x^2+y^2 - y^2-4ax -* Solutions 1 +* Solution 1 #+begin_src python var('x,y') x^2+y^2 @@ -52,10 +52,11 @@ var('a,x,y') y^2-4*a*x #+end_src python -* Questions 2 +* Question 2 - Find the values of the following constants upto 6 digits precision - pi^2 + - euler_gamma^2 - Find the value of the following. @@ -63,13 +64,13 @@ - sin(pi/4) - ln(23) -* Solutions 2 +* Solution 2 #+begin_src python n(pi^2,digits=6) n(sin(pi/4)) n(log(23,e)) #+end_src python -* Question 2 +* Question 3 - Define the piecewise function. f(x)=3x+2 when x is in the closed interval 0 to 4. @@ -78,7 +79,7 @@ - Sum of 1/(n^2-1) where n ranges from 1 to infinity. -* Solution Q1 +* Solution 3 #+begin_src python var('x') h(x)=3*x+2 @@ -86,18 +87,18 @@ f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x) f #+end_src python -* Solution Q2 + #+begin_src python var('n') f=1/(n^2-1) sum(f(n), n, 1, oo) #+end_src python - -* Questions 3 +* Question 4 - Differentiate the following. - - x^5*log(x^7) , degree=4 + - sin(x^3)+log(3x), to the second order + - x^5*log(x^7), to the fourth order - Integrate the given expression @@ -107,7 +108,7 @@ - cos(x^2)-log(x)=0 - Does the equation have a root between 1,2. -* Solutions 3 +* Solution 4 #+begin_src python var('x') f(x)= x^5*log(x^7) @@ -121,12 +122,12 @@ find_root(f(x)==0,1,2) #+end_src -* Question 4 +* Question 5 - Find the determinant and inverse of : A=[[x,0,1][y,1,0][z,0,y]] -* Solution 4 +* Solution 5 #+begin_src python var('x,y,z') A=matrix([[x,0,1],[y,1,0],[z,0,y]]) @@ -134,19 +135,12 @@ A.inverse() #+end_src * Summary - - We learnt about defining symbolic - expression and functions. - - Using built-in constants and functions. - - Using <Tab> to see the documentation of a - function. - -* Summary - - Simple calculus operations . - - Substituting values in expression - using substitute function. - - Creating symbolic matrices and - performing operation on them . - + - We learnt about defining symbolic expression and functions. + - Using built-in constants and functions. + - Using <Tab> to see the documentation of a function. + - Simple calculus operations . + - Substituting values in expression using substitute function. + - Creating symbolic matrices and performing operation on them . * Thank you! #+begin_latex \begin{block}{} |