1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) XXXX-2008 - INRIA
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
// [x, flag, resNorm, iter, resVec] = gmres( A, b, x, M, restrt, max_it, tol )
//
// GMRES solves the linear system Ax=b
// using the Generalized Minimal RESidual ( GMRES ) method with restarts .
//
// input A REAL nonsymmetric positive definite matrix or function
// x REAL initial guess vector
// b REAL right hand side vector
// M REAL preconditioner matrix or function
// restrt INTEGER number of iterations between restarts
// max_it INTEGER maximum number of iterations
// tol REAL error tolerance
//
// output x REAL solution vector
// flag INTEGER: 0 = solution found to tolerance
// 1 = no convergence given max_it
// resNorm REAL final residual norm
// iter INTEGER number of iterations performed
// resVec REAL residual vector
// Details of this algorithm are described in
//
// "Templates for the Solution of Linear Systems: Building Blocks
// for Iterative Methods",
// Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout,
// Pozo, Romine, and Van der Vorst, SIAM Publications, 1993
// (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
//
// "Iterative Methods for Sparse Linear Systems, Second Edition"
// Saad, SIAM Publications, 2003
// (ftp ftp.cs.umn.edu; cd dept/users/saad/PS; get all_ps.zip).
function [x, flag, resNorm, iter, resVec] = gmres(A, varargin)
// -----------------------
// Parsing input arguments
// -----------------------
[lhs,rhs]=argn(0);
if ( rhs < 2 ),
error(msprintf(gettext("%s: Wrong number of input argument: At least %d expected.\n"),"gmres",2));
end
// Parsing the matrix A et the right hand side vector b
select type(A)
case 1 then
matrixType = 1;
case 5 then
matrixType = 1;
case 13 then
matrixType = 0;
end
// If A is a matrix (full or sparse)
if (matrixType == 1),
if (size(A,1) ~= size(A,2)),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Square matrix expected.\n"),"gmres",1));
end
end
b=varargin(1);
if (size(b,2) ~= 1),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Column vector expected.\n"),"gmres",2));
end
if (matrixType==1),
if (size(b,1) ~= size(A,1)),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"gmres",2,1));
end
end
// Number of iterations between restarts
if (rhs >= 3),
restrt=varargin(2);
if (size(restrt) ~= [1 1]),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Scalar expected.\n"),"gmres",3));
end
else
restrt=20;
end
// Error tolerance tol
if (rhs >= 4),
tol=varargin(3);
if (size(tol) ~= [1 1]);
error(msprintf(gettext("%s: Wrong size for input argument #%d: Scalar expected.\n"),"gmres",4));
end
else
tol = 1e-6;
end
// Maximum number of iterations max_it
if (rhs >= 5),
max_it=varargin(4);
if (size(max_it) ~= [1 1]),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Scalar expected.\n"),"gmres",5));
end
else
max_it=size(b,1);
end
// Parsing of the preconditioner matrix M
if (rhs >= 6),
M = varargin(5);
select type(M)
case 1 then
precondType = 1;
case 5 then
precondType = 1;
case 13 then
precondType = 0;
end
if (precondType == 1),
if (size(M,1) ~= size(M,2)),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Square matrix expected.\n"),"gmres",4));
end
if (size(M,1) == 0),
precondType = 2; // no preconditionning
elseif ( size(M,1) ~= size(b,1) ),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"gmres",4,2));
end
end
else
precondType = 2; // no preconditionning
end
// Parsing of the initial vector x
if (rhs >= 7),
x=varargin(6);
if (size(x,2) ~= 1),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Column vector expected.\n"),"gmres",3));
end
if ( size(x,1) ~= size(b,1) ),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"gmres",3,2));
end
else
x=zeros(b);
end
if (rhs > 7),
error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"gmres",2,7));
end
// ------------
// Computations
// ------------
j = 0;
flag = 0;
it2 = 0;
bnrm2 = norm(b);
if (bnrm2 == 0.0),
x = zeros(b);
resNorm = 0;
iter = 0;
resVec = resNorm;
flag = 0;
return
end
// r = M \ ( b-A*x );
if (matrixType == 1),
r = b - A*x;
else
r = b - A(x);
end
if (precondType == 1),
r = M \ r;
elseif (precondType == 0),
r = M(r);
end
resNorm = norm(r)/bnrm2;
resVec = resNorm;
if (resNorm < tol),
iter=0;
return;
end
n = size(b,1);
m = restrt;
V(1:n,1:m+1) = zeros(n,m+1);
H(1:m+1,1:m) = zeros(m+1,m);
cs(1:m) = zeros(m,1);
sn(1:m) = zeros(m,1);
e1 = zeros(n,1);
e1(1) = 1.0;
for j = 1:max_it
// r = M \ ( b-A*x );
if (matrixType == 1),
r = b - A*x;
else
r = b - A(x);
end
if (precondType == 1),
r = M \ r;
elseif (precondType == 0),
r = M(r);
end
V(:,1) = r / norm( r );
s = norm( r )*e1;
for i = 1:m // construct orthonormal
it2 = it2 + 1; // basis using Gram-Schmidt
// w = M \ (A*V(:,i));
if (matrixType == 1),
w = A*V(:,i);
else
w = A(V(:,i));
end
if (precondType == 1),
w = M \ w;
elseif (precondType == 0),
w = M(w);
end
for k = 1:i
H(k,i)= w'*V(:,k);
w = w - H(k,i)*V(:,k);
end
H(i+1,i) = norm( w );
V(:,i+1) = w / H(i+1,i);
for k = 1:i-1 // apply Givens rotation
temp = cs(k)*H(k,i) + sn(k)*H(k+1,i);
H(k+1,i) = -sn(k)*H(k,i) + cs(k)*H(k+1,i);
H(k,i) = temp;
end
// form i-th rotation matrix
[tp1,tp2] = rotmat( H(i,i), H(i+1,i) );
cs(i) = tp1;
sn(i) = tp2;
temp = cs(i)*s(i);
s(i+1) = -sn(i)*s(i);
s(i) = temp;
H(i,i) = cs(i)*H(i,i) + sn(i)*H(i+1,i);
H(i+1,i) = 0.0;
resNorm = real(abs(s(i+1))) / bnrm2;
resVec = [resVec;resNorm];
if ( resNorm <= tol ),
y = H(1:i,1:i) \ s(1:i);
x = x + V(:,1:i)*y;
break;
end
end
if (resNorm <= tol),
iter = j-1+it2;
break;
end
y = H(1:m,1:m) \ s(1:m);
// update approximation
x = x + V(:,1:m)*y;
// r = M \ ( b-A*x )
if (matrixType == 1),
r = b - A*x;
else
r = b - A(x);
end
if (precondType == 1),
r = M \ r;
elseif (precondType == 0),
r = M(r);
end
s(j+1) = norm(r);
resNorm = real(s(j+1)) / bnrm2;
resVec = [resVec; resNorm];
if ( resNorm <= tol ),
iter = j+it2;
break;
end
if ( j== max_it ),
iter=j+it2;
end
end
if ( resNorm > tol ),
flag = 1;
if (lhs < 2),
warning(msprintf(gettext("%s: Did not converge.\n"),"gmres"));
end
end
endfunction //GMRES
//
// Compute the Givens rotation matrix parameters for a and b.
//
function [ c, s ] = rotmat( a, b )
if ( b == 0.0 ),
c = 1.0;
s = 0.0;
elseif ( abs(b) > abs(a) ),
temp = a / b;
s = 1.0 / sqrt( 1.0 + temp^2 );
c = temp * s;
else
temp = b / a;
c = 1.0 / sqrt( 1.0 + temp^2 );
s = temp * c;
end
endfunction //rotmat
|