summaryrefslogtreecommitdiff
path: root/modules/sparse/macros/gmres.sci
blob: ec09430420a3b56eeb847fc8dd5f826dfdfb7fac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) XXXX-2008 - INRIA
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt


// [x, flag, resNorm, iter, resVec] = gmres( A, b, x, M, restrt, max_it, tol )
//
// GMRES solves the linear system Ax=b
// using the Generalized Minimal RESidual ( GMRES ) method with restarts .
//
// input   A        REAL nonsymmetric positive definite matrix or function
//         x        REAL initial guess vector
//         b        REAL right hand side vector
//         M        REAL preconditioner matrix or function
//         restrt   INTEGER number of iterations between restarts
//         max_it   INTEGER maximum number of iterations
//         tol      REAL error tolerance
//
// output  x        REAL solution vector
//         flag     INTEGER: 0 = solution found to tolerance
//                           1 = no convergence given max_it
//         resNorm      REAL final residual norm
//         iter     INTEGER number of iterations performed
//         resVec      REAL residual vector

//     Details of this algorithm are described in
//
//     "Templates for the Solution of Linear Systems: Building Blocks
//     for Iterative Methods",
//     Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout,
//     Pozo, Romine, and Van der Vorst, SIAM Publications, 1993
//     (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
//
//     "Iterative Methods for Sparse Linear Systems, Second Edition"
//     Saad, SIAM Publications, 2003
//     (ftp ftp.cs.umn.edu; cd dept/users/saad/PS; get all_ps.zip).

function [x, flag, resNorm, iter, resVec] = gmres(A, varargin)

    // -----------------------
    // Parsing input arguments
    // -----------------------

    [lhs,rhs]=argn(0);
    if ( rhs < 2 ),
        error(msprintf(gettext("%s: Wrong number of input argument: At least %d expected.\n"),"gmres",2));
    end

    // Parsing the matrix A et the right hand side vector b
    select type(A)
    case 1 then
        matrixType = 1;
    case 5 then
        matrixType = 1;
    case 13 then
        matrixType = 0;
    end
    // If A is a matrix (full or sparse)
    if (matrixType == 1),
        if (size(A,1) ~= size(A,2)),
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Square matrix expected.\n"),"gmres",1));
        end
    end
    b=varargin(1);
    if (size(b,2) ~= 1),
        error(msprintf(gettext("%s: Wrong size for input argument #%d: Column vector expected.\n"),"gmres",2));
    end
    if (matrixType==1),
        if (size(b,1) ~= size(A,1)),
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"gmres",2,1));
        end
    end

    // Number of iterations between restarts
    if (rhs >= 3),
        restrt=varargin(2);
        if (size(restrt) ~= [1 1]),
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Scalar expected.\n"),"gmres",3));
        end
    else
        restrt=20;
    end

    // Error tolerance tol
    if (rhs >= 4),
        tol=varargin(3);
        if (size(tol) ~= [1 1]);
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Scalar expected.\n"),"gmres",4));
        end
    else
        tol = 1e-6;
    end

    // Maximum number of iterations max_it
    if (rhs >= 5),
        max_it=varargin(4);
        if (size(max_it) ~= [1 1]),
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Scalar expected.\n"),"gmres",5));
        end
    else
        max_it=size(b,1);
    end

    // Parsing of the preconditioner matrix M
    if (rhs >= 6),
        M = varargin(5);
        select type(M)
        case 1 then
            precondType = 1;
        case 5 then
            precondType = 1;
        case 13 then
            precondType = 0;
        end
        if (precondType == 1),
            if (size(M,1) ~= size(M,2)),
                error(msprintf(gettext("%s: Wrong size for input argument #%d: Square matrix expected.\n"),"gmres",4));
            end
            if (size(M,1) == 0),
                precondType = 2; // no preconditionning
            elseif ( size(M,1) ~= size(b,1) ),
                error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"gmres",4,2));
            end
        end
    else
        precondType = 2; // no preconditionning
    end

    // Parsing of the initial vector x
    if (rhs >= 7),
        x=varargin(6);
        if (size(x,2) ~= 1),
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Column vector expected.\n"),"gmres",3));
        end
        if ( size(x,1) ~= size(b,1) ),
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"gmres",3,2));
        end
    else
        x=zeros(b);
    end

    if (rhs > 7),
        error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"gmres",2,7));
    end

    // ------------
    // Computations
    // ------------

    j = 0;
    flag = 0;
    it2 = 0;

    bnrm2 = norm(b);
    if (bnrm2 == 0.0),
        x = zeros(b);
        resNorm = 0;
        iter = 0;
        resVec = resNorm;
        flag = 0;
        return
    end

    // r = M \ ( b-A*x );
    if (matrixType == 1),
        r = b - A*x;
    else
        r = b - A(x);
    end
    if (precondType == 1),
        r = M \ r;
    elseif (precondType == 0),
        r = M(r);
    end
    resNorm = norm(r)/bnrm2;
    resVec = resNorm;
    if (resNorm < tol),
        iter=0;
        return;
    end

    n = size(b,1);
    m = restrt;
    V(1:n,1:m+1) = zeros(n,m+1);
    H(1:m+1,1:m) = zeros(m+1,m);
    cs(1:m) = zeros(m,1);
    sn(1:m) = zeros(m,1);
    e1    = zeros(n,1);
    e1(1) = 1.0;

    for j = 1:max_it
        // r = M \ ( b-A*x );
        if (matrixType == 1),
            r = b - A*x;
        else
            r = b - A(x);
        end
        if (precondType == 1),
            r = M \ r;
        elseif (precondType == 0),
            r = M(r);
        end

        V(:,1) = r / norm( r );
        s = norm( r )*e1;
        for i = 1:m      // construct orthonormal
            it2 = it2 + 1; // basis using Gram-Schmidt
            // w = M \ (A*V(:,i));
            if (matrixType == 1),
                w = A*V(:,i);
            else
                w = A(V(:,i));
            end
            if (precondType == 1),
                w = M \ w;
            elseif (precondType == 0),
                w = M(w);
            end

            for k = 1:i
                H(k,i)= w'*V(:,k);
                w = w - H(k,i)*V(:,k);
            end
            H(i+1,i) = norm( w );
            V(:,i+1) = w / H(i+1,i);
            for k = 1:i-1 // apply Givens rotation
                temp     =  cs(k)*H(k,i) + sn(k)*H(k+1,i);
                H(k+1,i) = -sn(k)*H(k,i) + cs(k)*H(k+1,i);
                H(k,i)   = temp;
            end
            // form i-th rotation matrix
            [tp1,tp2] = rotmat( H(i,i), H(i+1,i) );
            cs(i)  = tp1;
            sn(i)  = tp2;
            temp   = cs(i)*s(i);
            s(i+1) = -sn(i)*s(i);
            s(i)   = temp;
            H(i,i) = cs(i)*H(i,i) + sn(i)*H(i+1,i);
            H(i+1,i) = 0.0;
            resNorm  = real(abs(s(i+1))) / bnrm2;
            resVec = [resVec;resNorm];
            if ( resNorm <= tol ),
                y = H(1:i,1:i) \ s(1:i);
                x = x + V(:,1:i)*y;
                break;
            end
        end
        if (resNorm <= tol),
            iter = j-1+it2;
            break;
        end
        y = H(1:m,1:m) \ s(1:m);
        // update approximation
        x = x + V(:,1:m)*y;
        // r = M \ ( b-A*x )
        if (matrixType == 1),
            r = b - A*x;
        else
            r = b - A(x);
        end
        if (precondType == 1),
            r = M \ r;
        elseif (precondType == 0),
            r = M(r);
        end
        s(j+1) = norm(r);
        resNorm = real(s(j+1)) / bnrm2;
        resVec = [resVec; resNorm];

        if ( resNorm <= tol ),
            iter = j+it2;
            break;
        end
        if ( j== max_it ),
            iter=j+it2;
        end
    end
    if ( resNorm > tol ),
        flag = 1;
        if (lhs < 2),
            warning(msprintf(gettext("%s: Did not converge.\n"),"gmres"));
        end
    end
endfunction //GMRES


//
// Compute the Givens rotation matrix parameters for a and b.
//
function [ c, s ] = rotmat( a, b )
    if ( b == 0.0 ),
        c = 1.0;
        s = 0.0;
    elseif ( abs(b) > abs(a) ),
        temp = a / b;
        s = 1.0 / sqrt( 1.0 + temp^2 );
        c = temp * s;
    else
        temp = b / a;
        c = 1.0 / sqrt( 1.0 + temp^2 );
        s = temp * c;
    end
endfunction //rotmat