summaryrefslogtreecommitdiff
path: root/modules/sparse/macros/conjgrad.sci
blob: 07a7da992f9e6add2412e3d05dd350538d305a24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2013 - Scilab Enterprises - Paul Bignier: transformed into a gateway to
//                                                         propose pcg, cgs, bicg and bicgstab.
// Copyright (C) 2009 - INRIA - Michael Baudin
// Copyright (C) 2008 - INRIA - Michael Baudin
// Copyright (C) 2006 - INRIA - Serge Steer
// Copyright (C) 2005 - IRISA - Sage Group
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt

//
// conjgrad --
//   This function regroups four methods from the "Conjugate Gradient family" to solve the linear system %Ax=b:
//     - PCG (Preconditioned Conjugate Gradient): A must be symmetric positive definite,
//     - CGS (preconditioned Conjugate Gradient Squared): A must be square,
//     - BICG (preconditioned BiConjugate Gradient): A must be square,
//     - BICGSTAB (preconditioned BiConjugate Gradient Stabilized): A must be square (default method).
//   If M is given, it is used as a preconditionning matrix.
//   If both M and M2 are given, the matrix M * M2 is used as a preconditionning
//   matrix.
//
// input   %A       REAL matrix or a function y=Ax(x) which computes y=%A*x for a given x
//         b        REAL right hand side vector
//         tol, optional      REAL error tolerance (default: 1e-8)
//         maxIter, optional  INTEGER maximum number of iterations (default: size(%b))
//         %M, optional       REAL preconditioner matrix (default: none)
//         %M2, optional      REAL preconditioner matrix (default: none)
//         x0, optional       REAL initial guess vector (default: the zero vector)
//         verbose, optional  INTEGER set to 1 to enable verbose logging (default : 0)
//
// output  x        REAL solution vector
//         flag     INTEGER: 0 = solution found to tolerance
//                           1 = no convergence given maxIter
//         resNorm  REAL final relative norm of the residual
//         iter     INTEGER number of iterations performed
//         resVec   REAL residual vector
//
// References
//
//   PCG
//     "Templates for the Solution of Linear Systems: Building Blocks
//     for Iterative Methods",
//     Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout,
//     Pozo, Romine, and Van der Vorst, SIAM Publications, 1993
//     (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
//
//     "Iterative Methods for Sparse Linear Systems, Second Edition"
//     Saad, SIAM Publications, 2003
//     (ftp ftp.cs.umn.edu; cd dept/users/saad/PS; get all_ps.zip).
//
//     Golub and Van Loan, Matrix Computations
//
//   CGS
//     "CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems"
//     by Peter Sonneveld
//
//     http://epubs.siam.org/doi/abs/10.1137/0910004
//     http://dl.acm.org/citation.cfm?id=64888&preflayout=flat
//     http://mathworld.wolfram.com/ConjugateGradientSquaredMethod.html
//
//   BICG
//     "Numerical Recipes: The Art of Scientific Computing." (third ed.)
//     by William Press, Saul Teukolsky, William Vetterling, Brian Flannery.
//
//     http://apps.nrbook.com/empanel/index.html?pg=87
//     http://dl.acm.org/citation.cfm?doid=1874391.187410
//     http://mathworld.wolfram.com/BiconjugateGradientMethod.html
//
//   BICGSTAB
//     "Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems"
//     by Henk van der Vorst.
//
//     http://epubs.siam.org/doi/abs/10.1137/0913035
//     http://dl.acm.org/citation.cfm?id=131916.131930&coll=DL&dl=GUIDE&CFID=372773884&CFTOKEN=56630250
//     http://mathworld.wolfram.com/BiconjugateGradientStabilizedMethod.html
//
// Notes
//
//     The input / output arguments of this command are the same as
//     Matlab's pcg, cgs, bicg and bicgstab commands, augmented with the 'method' argument
//

function [x, flag, resNorm, iter, resVec] = conjgrad(%A, %b, method, tol, maxIter, %M, %M2, x0, verbose )

    [lhs, rhs] = argn(0);

    if rhs < 2 then
        error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"conjgrad",2,7));
    end
    if rhs > 8 then
        error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"conjgrad",2,7));
    end
    if exists("method", "local") == 0 then
        method = "bicgstab";
    end
    if exists("tol", "local") == 0 then
        tol = 1e-8
    end
    if exists("maxIter", "local") == 0 then
        maxIter = size(%b, 1)
    end
    if exists("%M", "local") == 0 then
        %M = []
    end
    if exists("%M2", "local") == 0 then
        %M2 = []
    end
    if exists("x0", "local") == 0 then
        x0 = zeros(%b);
    end
    if exists("verbose", "local") == 0 then
        verbose = 0;
    end
    if verbose == 1 then
        printf(gettext("Arguments:\n"));
        printf("  tol = "+string(tol)+"\n");
        printf("  maxIter = "+string(maxIter)+"\n");
        printf("  M = \n")
        disp(%M)
        printf("  M2 = \n");
        disp(%M2)
        printf("  x0 = \n");
        disp(x0)
        printf("  verbose = "+string(verbose)+"\n");
    end
    // Compute matrixType
    select type(%A)
    case 1 then
        matrixType = 1;
    case 5 then
        matrixType = 1;
    case 13 then
        matrixType = 0;
        Aargs = list()
    case 15 then
        Aargs = list(%A(2:$))
        // Caution : modify the input argument %A !
        %A = %A(1);
        matrixType = 0;
    else
        error(msprintf(gettext("%s: Wrong type for input argument #%d.\n"),"conjgrad",1));
    end
    // If %A is a matrix (dense or sparse)
    if matrixType == 1 then
        if size(%A,1) ~= size(%A,2) then
            error(msprintf(gettext("%s: Wrong type for input argument #%d: Square matrix expected.\n"),"conjgrad",1));
        end
    end
    // Check right hand side %b
    if type(%b) ~= 1
        error(msprintf(gettext("%s: Wrong type for input argument #%d: A matrix expected.\n"),"conjgrad",2));
    end
    if size(%b,2) ~= 1 then
        error(msprintf(gettext("%s: Wrong type for input argument #%d: Column vector expected.\n"),"conjgrad",2));
    end
    if matrixType == 1 then
        if size(%b,1) ~= size(%A,1) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"conjgrad",2,1));
        end
    end
    if matrixType == 1 then
        if size(%b,1) ~= size(%A,1) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"conjgrad",2,1));
        end
    end
    // Check method
    if type(method) ~= 10 | size(method) ~= [1 1]
        error(msprintf(gettext("%s: Wrong type for input argument #%d: Single String expected.\n"),"conjgrad",3));
    elseif and(method ~= ["pcg" "cgs" "bicg" "bicgstab"]),
        error(msprintf(gettext("%s: Wrong value for input argument #%d: %s, %s, %s or %s expected.\n"),"conjgrad",3,"pcg","cgs","bicg","bicgstab"));
    end
    // Check type of the error tolerance tol
    if or(size(tol) ~= [1 1]) then
        error(msprintf(gettext("%s: Wrong type for input argument #%d: Scalar expected.\n"),"conjgrad",4));
    end
    // Check the type of maximum number of iterations maxIter
    if or(size(maxIter) ~= [1 1]) then
        error(msprintf(gettext("%s: Wrong type for input argument #%d: Scalar expected.\n"),"conjgrad",5));
    end
    // Compute precondType
    select type(%M)
    case 1 then
        // M is a matrix
        // precondType = 0 if the M is empty
        //             = 1 if the M is not empty
        precondType = bool2s(size(%M,"*")>=1);
    case 5 then
        precondType = 1;
    case 13 then
        Margs = list()
        precondType = 2;
    case 15 then
        Margs = list(%M(2:$))
        // Caution : modify the input argument %M !
        %M = %M(1);
        precondType = 2;
    else
        error(msprintf(gettext("%s: Wrong type for input argument #%d.\n"),"conjgrad",6));
    end
    if precondType == 1 then
        if size(%M,1) ~= size(%M,2) then
            error(msprintf(gettext("%s: Wrong type for input argument #%d: Square matrix expected.\n"),"conjgrad",6));
        end
        if size(%M,1) ~= size(%b,1) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"conjgrad",6,2));
        end
    end
    // Compute precondBis
    select type(%M2)
    case 1 then
        // M2 is a matrix
        // precondBis = 0 if the M2 is empty
        //            = 1 if the M2 is not empty
        precondBis = bool2s(size(%M2,"*")>=1);
    case 5 then
        precondBis = 1;
    case 13 then
        M2args = list()
        precondBis = 2;
    case 15 then
        M2args = list(%M2(2:$))
        // Caution : modify the input argument %M2 !
        %M2 = %M2(1);
        // Caution : modify precondType again !
        precondType = 2;
    else
        error(msprintf(gettext("%s: Wrong type for input argument #%d.\n"),"conjgrad",7));
    end
    if precondBis == 1 then
        if size(%M2,1) ~= size(%M2,2) then
            error(msprintf(gettext("%s: Wrong type for input argument #%d: Square matrix expected.\n"),"conjgrad",7));
        end
        if size(%M2,1) ~= size(%b,1) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"conjgrad",7,2));
        end
    end
    // Check size of the initial vector x0
    if size(x0,2) ~= 1 then
        error(msprintf(gettext("%s: Wrong value for input argument #%d: Column vector expected.\n"),"conjgrad",8));
    end
    if size(x0,1) ~= size(%b,1) then
        error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"conjgrad",8,2));
    end

    // ------------
    // Computations
    // ------------
    select method
    case "pcg"
        [x, resNorm, iter, resVec] = %pcg(%A, %b, tol, maxIter, %M, %M2, x0, verbose )
    case "cgs"
        [x, resNorm, iter, resVec] = %cgs(%A, %b, tol, maxIter, %M, %M2, x0, verbose )
    case "bicg"
        [x, resNorm, iter, resVec] = %bicg(%A, %b, tol, maxIter, %M, %M2, x0, verbose )
    else // "bicgstab"
        [x, resNorm, iter, resVec] = %bicgstab(%A, %b, tol, maxIter, %M, %M2, x0, verbose )
    end

    // Test for convergence
    if resNorm > tol then
        if verbose == 1 then
            printf(gettext("Final residual = %s > tol =%s\n"),string(resNorm),string(tol));
            printf(gettext("Algorithm fails\n"));
        end
        flag = 1;
        if lhs < 2 then
            warning(msprintf(gettext("%s: Convergence error.\n"),"conjgrad"));
        end
    else
        flag = 0;
        if verbose == 1 then
            printf(gettext("Algorithm pass\n"));
        end
    end

endfunction