1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2013 - Scilab Enterprises - Paul Bignier
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
//
// bicgstab --
// BICG solves the linear system %Ax=b using the BiConjugate Gradient Stabilized method.
// If M is given, it is used as a preconditionning matrix.
// If both M and M2 are given, the matrix M * M2 is used as a preconditionning
// matrix.
//
// input %A REAL matrix or a function y=Ax(x) which computes y=%A*x for a given x
// b REAL right hand side vector
// tol, optional REAL error tolerance (default: 1e-8)
// maxIter, optional INTEGER maximum number of iterations (default: size(%b))
// %M, optional REAL preconditioner matrix (default: none)
// %M2, optional REAL preconditioner matrix (default: none)
// x0, optional REAL initial guess vector (default: the zero vector)
// verbose, optional INTEGER set to 1 to enable verbose logging (default : 0)
//
// output x REAL solution vector
// resNorm REAL final relative norm of the residual
// iter INTEGER number of iterations performed
// resVec REAL residual vector
//
// References
//
// "Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems"
// by Henk van der Vorst.
//
// http://epubs.siam.org/doi/abs/10.1137/0913035
// http://dl.acm.org/citation.cfm?id=131916.131930&coll=DL&dl=GUIDE&CFID=372773884&CFTOKEN=56630250
// http://mathworld.wolfram.com/BiconjugateGradientStabilizedMethod.html
//
// Notes
// This script was originally a matlab > scilab translation of the bicgstab.m
// script from http://www.netlib.org/templates/matlab
//
// The input / output arguments of this command are the same as Matlab's bicgstab command.
//
function [x, resNorm, iter, resVec] = %bicgstab(%A, %b, tol, maxIter, %M, %M2, x0, verbose )
// Initialization
bnrm2 = norm(%b);
if (verbose==1) then
printf(gettext("Norm of right-hand side : %s\n"), string(bnrm2));
end
if (bnrm2 == 0) then
if (verbose==1) then
printf(gettext("Special processing where the right-hand side is zero.\n"));
end
// When rhs is 0, there is a trivial solution : x=0
x = zeros(%b);
resNorm = 0;
resVec = resNorm;
else
x = x0;
// r = %b - %A*x;
if (matrixType ==1),
r = %b - %A*x;
r2 = r;
else
r = %b - %A(x,Aargs(:));
r2 = r;
end
resNorm = norm(r) / bnrm2;
resVec = resNorm;
end
if (verbose==1) then
printf(gettext(" Type of preconditionning #1 : %d\n"),precondType);
printf(gettext(" Type of preconditionning #2 : %d\n"),precondBis);
end
// Begin iteration
// Distinguish the number of iterations processed from the currentiter index
iter = 0
for currentiter = 1:maxIter
if (resNorm <= tol) then
if (verbose==1) then
printf(gettext(" New residual = %s < tol = %s => break\n"),string(resNorm),string(tol));
end
break;
end
iter = iter + 1
if (verbose==1) then
printf(gettext(" Iteration #%s/%s residual : %s\n"),string(currentiter),string(maxIter),string(resNorm));
printf(" x=\n");
disp(x);
end
rho = r2'*r;
if (rho == 0) then
break;
end
if (currentiter > 1) then
bet = (rho/rho_old)*(alp/ome);
p = r + bet*(p-ome*v);
else
p = r;
end
// Solve M' M2' P = p
if %M == [] & %M2 == [] then
P = p;
elseif %M2 == [] then
// Compute r so that M' P = p
if (precondType == 1) then
P = %M \ p;
elseif (precondType == 2) then
P = %M(p,Margs(:));
else
P = p;
end
else
// Compute r so that M' M2' P = p
if (precondBis == 1) then
P = %M \ p;
P = %M2 \ p;
elseif (precondBis == 2) then
P = %M(p,Margs(:));
P = %M2(p,M2args(:));
else
P = p;
end
end
// v = %A*P;
if (matrixType == 1),
v = %A*P;
else
v = %A(P);
end
alp = rho / (r2'*v);
s = r - alp*v;
// Check for convergence
if (norm(s) <= tol) then
x = x+alp*P;
resNorm = norm(s) / bnrm2;
if (verbose==1) then
printf(gettext(" New residual = %s < tol = %s => break\n"),string(resNorm),string(tol));
end
resVec = [resVec;resNorm];
break;
end
// Solve M M2 S = s
if %M == [] & %M2 == [] then
S = s;
elseif %M2 == [] then
// Compute r so that M S = s
if (precondType == 1) then
S = %M \ s;
elseif (precondType == 2) then
S = %M(s,Margs(:));
else
S = s;
end
else
// Compute r so that M M2 S = s
if (precondBis == 1) then
S = %M \ s;
S = %M2 \ s;
elseif (precondBis == 2) then
S = %M(s,Margs(:));
S = %M2(s,M2args(:));
else
S = s;
end
end
// t = %A*S;
if (matrixType == 1),
t = %A*S;
else
t = %A(S);
end
ome = (t'*s)/(t'*t);
x = x + alp*P+ome*S;
r = s - ome*t;
resNorm = norm(r) / bnrm2;
// Caution : transform the scalar resVec into vector resVec !
resVec = [resVec;resNorm];
rho_old = rho;
end
// Test for convergence
if (resNorm > tol) then
if (verbose==1) then
printf(gettext("Final residual = %s > tol =%s\n"),string(resNorm),string(tol));
printf(gettext("Algorithm fails\n"));
end
flag = 1;
if (lhs < 2) then
warning(msprintf(gettext("%s: Convergence error.\n"),"bicgstab"));
end
else
flag = 0;
if (verbose==1) then
printf(gettext("Algorithm pass\n"));
end
end
endfunction
|