summaryrefslogtreecommitdiff
path: root/modules/simulated_annealing/demos/SAdemo.sce
blob: 2012e14499792820b6c7195ddb796af80fd35c46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//////////////////////////////////////////////////////
// example of use of the simulated annealing method //
//////////////////////////////////////////////////////

function demo_sa_1()

    my_handle = scf(100001);
    clf(my_handle,"reset");
    demo_viewCode("SAdemo.sce");
    my_handle.info_message = _("Please wait ...");

    lines(0);
    old_funcprot = funcprot();
    funcprot(0);

    ////////////////////////
    // Rastrigin function //
    ////////////////////////

    function Res = min_bd_rastrigin()
        Res = [-1 -1]';
    endfunction
    function Res = max_bd_rastrigin()
        Res = [1 1]';
    endfunction
    function Res = opti_rastrigin()
        Res = [0 0]';
    endfunction
    function y = rastrigin(x)
        y = x(1)^2+x(2)^2-cos(12*x(1))-cos(18*x(2));
    endfunction

    func = "rastrigin";

    Proba_start = 0.8;
    It_intern = 1000;
    It_extern = 30;
    It_Pre  = 100;
    alpha   = 0.9;

    DoSA  = %T;
    DoFSA   = %F;
    DoVFSA  = %F;
    DoCSA   = %F;
    DoHuang = %F;

    //////////////////////////////////////////

    Min = eval("min_bd_"+func+"()");
    Max = eval("max_bd_"+func+"()");
    x0  = (Max - Min).*rand(size(Min,1),size(Min,2)) + Min;

    deff("y=f(x)","y="+func+"(x)");

    /////////////////////////
    // Simulated Annealing //
    /////////////////////////

    if DoSA then
        printf("\nSA: geometrical decrease temperature law\n");

        sa_params = init_param();
        sa_params = add_param(sa_params,"min_delta",-0.1*(Max-Min));
        sa_params = add_param(sa_params,"max_delta", 0.1*(Max-Min));
        sa_params = add_param(sa_params,"neigh_func", neigh_func_default); // Optional
        sa_params = add_param(sa_params,"accept_func", accept_func_default); // Optional
        sa_params = add_param(sa_params,"temp_law", temp_law_default); // Optional
        sa_params = add_param(sa_params,"min_bound",Min);
        sa_params = add_param(sa_params,"max_bound",Max);
        sa_params = add_param(sa_params,"alpha",alpha); // for the decreasing temperature law

        T0 = compute_initial_temp(x0, f, Proba_start, It_Pre, sa_params);
        printf("Initial temperature T0 = %f\n", T0);

        [x_opt, f_opt, sa_mean_list, sa_var_list, temp_list] = optim_sa(x0, f, It_extern, It_intern, T0, Log = %T, sa_params);

        printf("optimal solution:\n"); disp(x_opt);
        printf("value of the objective function = %f\n", f_opt);

        if is_handle_valid(my_handle) then
            drawlater;
            subplot(2,1,1);
            xtitle("Geometrical annealing","Iteration","Mean / Variance");
            t = 1:length(sa_mean_list);
            plot(t,sa_mean_list,"r",t,sa_var_list,"g");
            legend(["Mean","Variance"]);
            subplot(2,1,2);
            xtitle("Temperature evolution","Iteration","Temperature");
            for i=1:length(t)-1
                plot([t(i) t(i+1)], [temp_list(i) temp_list(i)],"k-");
            end
            drawnow;
            my_handle.info_message = "";
        end
    end

    /////////
    // FSA //
    /////////

    if DoFSA then
        printf("SA: the FSA algorithm\n");

        sa_params = init_param();
        sa_params = add_param(sa_params,"min_delta",-0.1*(Max-Min));
        sa_params = add_param(sa_params,"max_delta", 0.1*(Max-Min));
        sa_params = add_param(sa_params,"neigh_func", neigh_func_default); // Required for compute_initial_temp
        sa_params = add_param(sa_params,"accept_func", accept_func_default); // Optional
        sa_params = add_param(sa_params,"temp_law", temp_law_fsa); // Required to transform SA into FSA
        sa_params = add_param(sa_params,"min_bound",Min);
        sa_params = add_param(sa_params,"max_bound",Max);

        T0 = compute_initial_temp(x0, f, Proba_start, It_Pre, sa_params);

        sa_params = remove_param(sa_params,"neigh_func");
        sa_params = add_param(sa_params,"neigh_func", neigh_func_fsa); // Required to transform SA into FSA

        printf("Initial temperature T0 = %f\n", T0);

        [x_opt, f_opt, sa_mean_list, sa_var_list, temp_list] = optim_sa(x0, f, It_extern, It_intern, T0, Log = %T, sa_params);

        printf("optimal solution:\n"); disp(x_opt);
        printf("value of the objective function = %f\n", f_opt);

        scf();
        drawlater;
        subplot(2,1,1);
        xtitle("FSA","Iteration","Mean / Variance");
        t = 1:length(sa_mean_list);
        plot(t,sa_mean_list,"r",t,sa_var_list,"g");
        legend(["Mean","Variance"]);
        subplot(2,1,2);
        xtitle("Temperature evolution","Iteration","Temperature");
        for i=1:length(t)-1
            plot([t(i) t(i+1)], [temp_list(i) temp_list(i)],"k-");
        end
        drawnow;
    end

    //////////
    // VFSA //
    //////////

    if DoVFSA then
        printf("SA: the VFSA algorithm\n");

        sa_params = init_param();
        sa_params = add_param(sa_params,"min_delta",-0.1*(Max-Min));
        sa_params = add_param(sa_params,"max_delta", 0.1*(Max-Min));
        sa_params = add_param(sa_params,"accept_func", accept_func_vfsa); // Required to transform SA into FSA
        sa_params = add_param(sa_params,"neigh_func", neigh_func_default); // Required for compute_initial_temp
        sa_params = add_param(sa_params,"temp_law", temp_law_vfsa); // Required to transform SA into FSA
        sa_params = add_param(sa_params,"type_accept", "vfsa"); // Required to compute correctly the starting temperature for VFSA
        sa_params = add_param(sa_params,"dimension", length(x0)); // Required to compute correctly the starting temperature for VFSA
        sa_params = add_param(sa_params,"min_bound",Min);
        sa_params = add_param(sa_params,"max_bound",Max);

        T0 = compute_initial_temp(x0, f, Proba_start, It_Pre, sa_params);

        sa_params = remove_param(sa_params,"neigh_func");
        sa_params = add_param(sa_params,"neigh_func", neigh_func_vfsa); // Required to transform SA into VFSA
        sa_params = remove_param(sa_params,"type_accept");
        sa_params = add_param(sa_params,"type_accept", "sa"); // We go back to the classical method for computing the starting temperature

        printf("Initial temperature T0 = %f\n", T0);

        [x_opt, f_opt, sa_mean_list, sa_var_list, temp_list] = optim_sa(x0, f, It_extern, It_intern, T0, Log = %T, sa_params);

        printf("optimal solution:\n"); disp(x_opt);
        printf("value of the objective function = %f\n", f_opt);

        scf();
        drawlater;
        subplot(2,1,1);
        xtitle("VFSA","Iteration","Mean / Variance");
        t = 1:length(sa_mean_list);
        plot(t,sa_mean_list,"r",t,sa_var_list,"g");
        legend(["Mean","Variance"]);
        subplot(2,1,2);
        xtitle("Temperature evolution","Iteration","Temperature");
        for i=1:length(t)-1
            plot([t(i) t(i+1)], [temp_list(i) temp_list(i)],"k-");
        end
        drawnow;
    end

    /////////
    // CSA //
    /////////

    if DoCSA then
        printf("SA: the CSA algorithm\n");

        sa_params = init_param();
        sa_params = add_param(sa_params,"min_delta",-0.1*(Max-Min));
        sa_params = add_param(sa_params,"max_delta", 0.1*(Max-Min));
        sa_params = add_param(sa_params,"neigh_func", neigh_func_default); // Required for compute_initial_temp
        sa_params = add_param(sa_params,"accept_func", accept_func_default); // Optional
        sa_params = add_param(sa_params,"temp_law", temp_law_csa); // Required to transform SA into CSA
        sa_params = add_param(sa_params,"min_bound",Min);
        sa_params = add_param(sa_params,"max_bound",Max);

        T0 = compute_initial_temp(x0, f, Proba_start, It_Pre, sa_params);

        sa_params = remove_param(sa_params,"neigh_func");
        sa_params = add_param(sa_params,"neigh_func", neigh_func_csa); // Required to transform SA into CSA

        printf("Initial temperature T0 = %f\n", T0);

        [x_opt, f_opt, sa_mean_list, sa_var_list, temp_list] = optim_sa(x0, f, It_extern, It_intern, T0, Log = %T, sa_params);

        printf("optimal solution:\n"); disp(x_opt);
        printf("value of the objective function = %f\n", f_opt);

        scf();
        drawlater;
        subplot(2,1,1);
        xtitle("Classical simulated annealing","Iteration","Mean / Variance");
        t = 1:length(sa_mean_list);
        plot(t,sa_mean_list,"r",t,sa_var_list,"g");
        legend(["Mean","Variance"]);
        subplot(2,1,2);
        xtitle("Temperature evolution","Iteration","Temperature");
        for i=1:length(t)-1
            plot([t(i) t(i+1)], [temp_list(i) temp_list(i)],"k-");
        end
        drawnow;
    end

    ///////////
    // Huang //
    ///////////

    if DoHuang then
        printf("SA: the Huang annealing\n");

        sa_params = init_param();
        sa_params = add_param(sa_params,"min_delta",-0.1*(Max-Min));
        sa_params = add_param(sa_params,"max_delta", 0.1*(Max-Min));
        sa_params = add_param(sa_params,"temp_law", temp_law_huang);
        sa_params = add_param(sa_params,"min_bound",Min);
        sa_params = add_param(sa_params,"max_bound",Max);

        T0 = compute_initial_temp(x0, f, Proba_start, It_Pre, sa_params);
        printf("Initial temperature T0 = %f\n", T0);

        [x_opt, f_opt, sa_mean_list, sa_var_list, temp_list] = optim_sa(x0, f, It_extern, It_intern, T0, Log = %T, sa_params);

        printf("optimal solution:\n"); disp(x_opt);
        printf("value of the objective function = %f\n", f_opt);

        scf();
        drawlater;
        subplot(2,1,1);
        xtitle("Huang annealing","Iteration","Mean / Variance");
        t = 1:length(sa_mean_list);
        plot(t,sa_mean_list,"r",t,sa_var_list,"g");
        legend(["Mean","Variance"]);
        subplot(2,1,2);
        xtitle("Temperature evolution","Iteration","Temperature");
        for i=1:length(t)-1
            plot([t(i) t(i+1)], [temp_list(i) temp_list(i)],"k-");
        end
        drawnow;
    end

    funcprot(old_funcprot);

endfunction

demo_sa_1();
clear demo_sa_1;