1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [Nz,Dz]=yulewalk(Norder, frq, mag)
//YULEWALK filter design using a least-squares method.
// Hz = YULEWALK(N,frq,mag) finds the N-th order iir filter
//
// n-1 n-2
// B(z) b(1)z + b(2)z + .... + b(n)
// H(z)= ---- = ---------------------------------
// n-1 n-2
// A(z) z + a(1)z + .... + a(n)
//
//which matches the magnitude frequency response given by vectors F and M.
//Vectors frq and mag specify the frequency and magnitude of the desired
//frequency response. The frequencies in frq must be between 0.0 and 1.0,
//with 1.0 corresponding to half the sample rate. They must be in
//increasing order and start with 0.0 and end with 1.0.
//
// Example: f=[0,0.4,0.4,0.6,0.6,1];H=[0,0,1,1,0,0];Hz=yulewalk(8,f,H);
//fs=1000;fhz = f*fs/2;
//clf(0);xset('window',0);plot2d(fhz',H');
//xtitle('Desired Frequency Response')
//[frq,repf]=repfreq(Hz,0:0.001:0.5);
//clf(1);xset('window',1);plot2d(fs*frq',abs(repf'));
//xtitle('Obtained Frequency Response')
//
[LHS,RHS]=argn(0);
if RHS <>3
error(msprintf(gettext("%s: Wrong number of input argument(s): %d expected.\n"),"yulewalk",3));
end
npt=512;
thelap=fix(npt/25);
[mf,nf]=size(frq);
[mm,nn]=size(mag);
if mm ~= mf | nn ~= nf
error(msprintf(gettext("%s: Incompatible input arguments #%d and #%d: Same sizes expected.\n"),"yulewalk",2,3));
end
nbrk=max(mf,nf);
if mf < nf
frq=frq';
mag=mag';
end
if abs(frq(1)) > %eps | abs(frq(nbrk) - 1) > %eps
error(msprintf(gettext("%s: Wrong values for input argument #%d: The first element must be %s and the last %s.\n"),"yulewalk",2,"0","1"));
end
npt=npt+1;
Ht=zeros(1,npt);
nint=nbrk-1;
df=frq(2:nf)-frq(1:nf-1);
if (or(df < 0))
error(msprintf(gettext("%s: Wrong values for input argument #%d: Elements must be in increasing order.\n"),"yulewalk",2));
end
nb=1;
Ht(1)=mag(1);
for i=1:nint
if df(i) == 0
nb=nb - thelap/2;
ne=nb + thelap;
else
ne=int(frq(i+1)*npt);
end
if (nb < 0 | ne > npt)
error(msprintf(gettext("%s: Too abrupt change near end of frequency range.\n"),"yulewalk"));
end
j=nb:ne;
if ne == nb
inc=0;
else
inc=(j-nb)/(ne-nb);
end
Ht(nb:ne)=inc*mag(i+1) + (1 - inc)*mag(i);
nb=ne + 1;
end
Ht=[Ht Ht(npt-1:-1:2)];
n=max(size(Ht));
n2=fix((n+1)/2);
nb=Norder;
nr=4*Norder;
nt=0:1:nr-1;
R=real(fft(Ht.*Ht,1));
R =R(1:nr).*(0.54+0.46*cos(%pi*nt/(nr-1)));
Rwindow=[1/2,ones(1,n2-1),zeros(1,n-n2)];
nr=max(size(R));
Rm=toeplitz(R(Norder+1:nr-1),R(Norder+1:-1:2));
Rhs=- R(Norder+2:nr);
denf=[1 Rhs/Rm'];
A=polystab(denf);
nA=size(A,"*");
Dz=poly(A(nA:-1:1),"z","c");
Qh=numf([R(1)/2,R(2:nr)],A,Norder); // compute additive decomposition
Qhsci=poly(Qh( size(Qh,"*"):-1:1 ),"z","c")
aa=A(:);bb=Qh(:);
nna=max(size(aa));nnb=max(size(bb));
Ss=2*real((fft([Qh,zeros(1,n-nnb)],-1) ./ fft([A,zeros(1,n-nna)],-1)));
hh=fft(exp(fft( Rwindow.*fft(log(Ss),1),-1)),1);
impr=filter(1,A,[1 zeros(1,nr-1)]);
B=real(hh(1:nr)/toeplitz(impr,[1 zeros(1,nb)])');
nB=size(B,"*");
Nz=poly(B(nB:-1:1),"z","c");
B =real(numf(hh(1:nr),A,nb));
if LHS==1 then
Nz=syslin("d",Nz/Dz);
end
endfunction
function b=polystab(a);
//Utility function for use with yulewalk: polynomial stabilization.
// polystab(A), where A is a vector of polynomial coefficients,
// stabilizes the polynomial with respect to the unit circle;
// roots whose magnitudes are greater than one are reflected
// inside the unit circle.
if length(a) == 1, b=a; return, end
ll=size(a,"*");
ap=poly(a($:-1:1),"s","coeff");
v=roots(ap); i=find(v~=0);
vs=0.5*(sign(abs(v(i))-1)+1);
v(i)=(1-vs).*v(i) + vs./conj(v(i));
b=a(1)*coeff(poly(v,"s"));
b =b(ll:-1:1);
if ~or(imag(a))
b=real(b);
end
endfunction
function b=numf(h,a,nb)
//NUMF Find numerator B given impulse-response h of B/A and denominator A
//NB is the numerator order. This function is used by yulewalk.
nh=max(size(h));
impr=filter(1,a,[1 zeros(1,nh-1)]);
b=h/toeplitz(impr,[1 zeros(1,nb)])';
endfunction
|