1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA - G. Le Vey
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [la, sig, lb] = levin(n, Cov)
// [la, sig, lb] = levin(n, Cov)
// macro which solves recursively on n
// the following Toeplitz system (normal equations)
//
//
// |R1 R2 . . . Rn |
// |R0 R1 . . . Rn-1|
// |R-1 R0 . . . Rn-2|
// | . . . . . . |
// |I -A1 . -An|| . . . . . . |
// | . . . . . . |
// | . . . . . . |
// |R2-n R3-n . . . R1 |
// |R1-n R2-n . . . R0 |
//
// where {Rk;k=1,nlag} is the sequence of nlag empirical covariances
//
// n : maximum order of the filter
// Cov : matrix containing the Rk (d*d matrices for a
// : d-dimensional process). It must be given the
// : following way:
//
// | R0 |
// | R1 |
// | R2 |
// | . |
// | . |
// | Rnlag|
//
// la : list-type variable, giving the successively calculated
// : polynomials (degree 1 to degree n), with coefficients Ak
// sig : list-type variable, giving the successive
// : mean-square errors.
//!
[lhs, rhs] = argn(0);
if rhs <> 2 then
error(msprintf(gettext("%s: Wrong number of input argument(s): %d expected.\n"), "levin", 2));
end
[l, d] = size(Cov);
if d > l then
error(msprintf(gettext("%s: Wrong size for input argument #%d: A tall matrix expected.\n"), "levin", 2));
end
//
// Initializations
//
a = eye(d, d);
b = a;
z = poly(0, "z");
la = list();
lb = list();
sig = list();
p = n+1;
cv = Cov;
for j=1:p
cv = [Cov(j*d+1:(j+1)*d, :)'; cv];
end
for j=0:n-1
//
// Levinson algorithm
//
r1 = flipdim(cv((p+1)*d+1:(p+2+j)*d, :), 1, d);
r2 = flipdim(cv(p*d+1:(p+1+j)*d, :), 1, d);
r3 = flipdim(cv((p-1-j)*d+1:p*d, :), 1, d);
r4 = flipdim(cv((p-j)*d+1:(p+1)*d, :), 1, d);
c1 = coeff(a);
c2 = coeff(b);
sig1 = c1*r4;
gam1 = c2*r2;
k1 = (c1*r1)*inv(gam1);
k2 = (c2*r3)*inv(sig1);
a1 = a-k1*z*b;
b = -k2*a+z*b;
a = a1;
la(j+1) = a;
lb(j+1) = b;
sig(j+1) = sig1;
end
endfunction
|