blob: 9a5d40416f1a2f9cc6b995427dc476b705f5b459 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA - 1988 - C. Bunks
// Copyright (C) INRIA - 1991 - C. Bunks
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [ar,sigma2,rc]=lev(r)
//[ar,sigma2,rc]=lev(r)
//Resolve the Yule-Walker equations:
//
// |r(0) r(1) ... r(N-1)|| a(1) | |sigma2|
// |r(1) r(0) ... r(n-1)|| a(2) | | 0 |
// | : : ... : || : |=| 0 |
// | : : ... : || : | | 0 |
// |r(N-1) r(N-2) ... r(0) ||a(N-1)| | 0 |
//
//using Levinson's algorithm.
// r :Correlation coefficients
// ar :Auto-Regressive model parameters
// sigma2 :Scale constant
// rc :Reflection coefficients
//!
//get the size of the correlation vector
rsize=max(size(r));
r=matrix(r,1,rsize);
//initialize levinson's algorithm
ar=-r(2)/r(1);
rc(1)=ar;
sigma2=(1-ar*conj(ar))*r(1);
//iterative solution to yule-walker equations
for k=2:rsize-1,
ak1(k)=-(r(k+1)+ar(1:k-1)'*r(k:-1:2)')/sigma2;
rc(k)=ak1(k);
ak1(1:k-1)=ar(1:k-1)+ak1(k)*conj(ar(k-1:-1:1));
sigma2=(1-ak1(k)*conj(ak1(k)))*sigma2;
ar=ak1;
end,
endfunction
|