summaryrefslogtreecommitdiff
path: root/modules/scicos/src/modelica_compiler/optimization.ml
blob: 608cc3184f7ed3df0d85e0dd25253fdcf4af5e68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
(*
 *  Modelicac
 *
 *  Copyright (C) 2005 - 2007 Imagine S.A.
 *  For more information or commercial use please contact us at www.amesim.com
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 *)

open SymbolicExpression


exception Can't_perform_inversion

let union xs ys =
  List.fold_left (fun xs y -> if List.memq y xs then xs else y :: xs) xs ys

module StringMap = Map.Make (struct type t = string let compare = compare end)

let map_length map = StringMap.fold (fun _ _ acc -> acc + 1) map 0

module IntegerElement =
  struct
    type t = Infinity | Int of int
    let zero = Int 0
    let infinity = Infinity
    let equal = ( = )
    let compare x y = match x, y with
      | Int i, Int i' -> compare i i'
      | Int _, Infinity -> -1
      | Infinity, Int _ -> 1
      | Infinity, Infinity -> 0
    let add x y = match x, y with
      | Int i, Int i' -> Int (i + i')
      | _, Infinity | Infinity, _ -> Infinity
    let sub x y = match x, y with
      | Int i, Int i' -> Int (i - i')
      | Infinity, Int _ -> Infinity
      | _, Infinity -> assert false
  end

module IntegerHungarianMethod =
  HungarianMethod.Make
    (IntegerElement)
    (SquareSparseMatrix.Make (IntegerElement))
    (BipartiteGraph)

type identifier_maps =
  {
    parameters_map: parameter StringMap.t Lazy.t;
    inputs_map: input StringMap.t Lazy.t;
    discrete_variables_map: variable StringMap.t Lazy.t;
    variables_map: variable StringMap.t Lazy.t
  }

and parameter =
  {
    parameter_kind: Instantiation.parameter_kind;
    parameter_type: parameter_type;
    parameter_id: int;
    parameter_comment: string;
    parameter_start: t Lazy.t
  }

and parameter_type = IntegerType | StringType | RealType

and input =
  {
    input_id: int;
    input_name: string;
    input_comment: string;
  }

and variable =
  {
    variable_id: int;
    variable_comment: string;
    variable_start: t Lazy.t option
  }

and model =
  {
    mutable inputs: string array;
    mutable parameters: parameter_description array;
    mutable discrete_variables: discrete_variable_description array;
    mutable variables: variable_description array;
    mutable equations: equation_description array;
    mutable reinitializable_variables: t list;
    mutable when_clauses: (t * when_expression list) list;
    mutable io_dependency: bool;
    mutable external_functions:
      (string list *
      Instantiation.expression_type list *
      Instantiation.expression_type list) list;
    trace: string option;
    variables_infos: (string * Compilation.variable_infos) list
  }

and parameter_description =
  {
    mutable main: bool;
    mutable p_type: parameter_type;
    mutable p_name: string;
    mutable p_comment: string;
    mutable value: t
  }

and discrete_variable_description =
  {
    mutable d_output: int option;
    mutable d_v_name: string;
    mutable d_v_comment: string;
    mutable d_start_value: t option
  }

and variable_description =
  {
    mutable output: int option;
    mutable state: bool;
    mutable v_name: string;
    mutable depth_in_hierarchy: int;
    mutable v_comment: string;
    mutable start_value: t option
  }

and equation_description =
  {
    mutable solved: bool;
    mutable inner_variables: t list;
    mutable inner_derivatives: t list;
    mutable assignable_variables: t list;
    mutable expression: t
  }

and when_expression =
  | Assign of t * t
  | Reinit of t * t


let scaling_factor = Num.power_num (Num.Int 10) (Num.Int 16)

let exists_array p xs =
  let l = Array.length xs in
  let rec exists_array_from i =
    i < l && (p xs.(i) || exists_array_from (i + 1)) in
  exists_array_from 0

let num_of_float f =
  let num_of_positive_float f =
    let m, e = frexp f in
    let sm = string_of_float m in
    let s = String.make 16 '0' in
    String.blit sm 2 s 0 (String.length sm - 2);
    let e' = Num.power_num (Num.Int 2) (Num.num_of_int e) in
    Num.div_num (Num.mult_num (Num.num_of_string s) e') scaling_factor
  in
  if f = 0.0 then Num.Int 0
  else if f < 0.0 then
    let num = num_of_positive_float (abs_float f) in
    Num.minus_num num
  else num_of_positive_float f

let string_of_reference = function
  | [(name, [||])] -> name
  | _ -> failwith "string_of_reference: bad reference"

let is_main_parameter id parameters_map =
  let parameter = StringMap.find id parameters_map in
  match parameter.parameter_kind with
    | Instantiation.Main -> true
    | Instantiation.Sub -> false

let get_parameter_start id parameters_map =
  let parameter = StringMap.find id parameters_map in
  Lazy.force parameter.parameter_start

let get_start_value id variables_map =
  let variable = StringMap.find id variables_map in
  match variable.variable_start with
    | None -> zero
    | Some lexpr -> Lazy.force lexpr

let rec symbolic_expression_of_expression inl_par maps iexpr =
  let rec symbolic_argument_of_argument = function
      | Instantiation.ScalarArgument iexpr ->
          ScalarArgument (symbolic_expression_of_expression' iexpr)
      | Instantiation.ArrayArgument (dims, iexprs) ->
          ArrayArgument
            (dims, Array.map symbolic_expression_of_expression' iexprs)
  and symbolic_expression_of_expression' iexpr =
    match iexpr.Instantiation.tex_expression with
      | None -> assert false
      | Some expr -> symbolic_expression_of_expression'' expr
  and symbolic_expression_of_expression'' = function
      | Instantiation.Abs iexpr ->
          let expr = symbolic_expression_of_expression' iexpr in
          symbolic_if
            (symbolic_ge expr zero)
            expr
            (symbolic_minus expr)
      | Instantiation.Acos iexpr ->
          symbolic_acos (symbolic_expression_of_expression' iexpr)
      | Instantiation.Acosh iexpr ->
          symbolic_acosh (symbolic_expression_of_expression' iexpr)
      | Instantiation.Addition (iexpr, iexpr') ->
          symbolic_add
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.And (iexpr, iexpr') ->
          symbolic_and
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Asin iexpr ->
          symbolic_asin (symbolic_expression_of_expression' iexpr)
      | Instantiation.Asinh iexpr ->
          symbolic_asinh (symbolic_expression_of_expression' iexpr)
      | Instantiation.Atan iexpr ->
          symbolic_atan (symbolic_expression_of_expression' iexpr)
      | Instantiation.Atanh iexpr ->
          symbolic_atanh (symbolic_expression_of_expression' iexpr)
      | Instantiation.Boolean false -> false_value
      | Instantiation.Boolean true -> true_value
      | Instantiation.Cardinality _ ->
          invalid_arg "symbolic_expression_of_expression'"
      | Instantiation.CompoundElement _ ->
          invalid_arg "symbolic_expression_of_expression'"
      | Instantiation.Cos iexpr ->
          symbolic_cos (symbolic_expression_of_expression' iexpr)
      | Instantiation.Cosh iexpr ->
          symbolic_cosh (symbolic_expression_of_expression' iexpr)
      | Instantiation.Der iexpr ->
          symbolic_derivative (symbolic_expression_of_expression' iexpr)
      | Instantiation.Division (iexpr, iexpr') ->
          symbolic_div
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Equals (iexpr, iexpr') ->
          symbolic_eq
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Exp iexpr ->
          symbolic_exp (symbolic_expression_of_expression' iexpr)
      | Instantiation.ExternalFunctionCall (path, _, _, iargs) ->
          symbolic_blackBox
            (function_name_of path)
            (List.map symbolic_argument_of_argument iargs)
      | Instantiation.Floor iexpr ->
          symbolic_floor (symbolic_expression_of_expression' iexpr)
      | Instantiation.GreaterEqualThan (iexpr, iexpr') ->
          symbolic_ge
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.GreaterThan (iexpr, iexpr') ->
          symbolic_gt
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.If (iif_exprs, iexpr) ->
          List.fold_right
            (fun (iexpr, iexpr') expr ->
              symbolic_if
                (symbolic_expression_of_expression' iexpr)
                (symbolic_expression_of_expression' iexpr')
                expr)
            iif_exprs
            (symbolic_expression_of_expression' iexpr)
      | Instantiation.Integer i -> create_integer i
      | Instantiation.Log iexpr ->
          symbolic_log (symbolic_expression_of_expression' iexpr)
      | Instantiation.Max (iexpr, iexpr') ->
          symbolic_max
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Min (iexpr, iexpr') ->
          symbolic_min
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Minus iexpr ->
          symbolic_minus (symbolic_expression_of_expression' iexpr)
      | Instantiation.Mod (iexpr, iexpr') ->
          let expr = symbolic_expression_of_expression' iexpr
          and expr' = symbolic_expression_of_expression' iexpr'
          in
          symbolic_sub
            expr
            (symbolic_mult (symbolic_floor (symbolic_div expr expr')) expr')
      | Instantiation.Multiplication (iexpr, iexpr') ->
          symbolic_mult
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.NoEvent iexpr ->
          create_blackBox
            "noEvent"
            [ScalarArgument (symbolic_expression_of_expression' iexpr)]
      | Instantiation.Not iexpr ->
          symbolic_not (symbolic_expression_of_expression' iexpr)
      | Instantiation.NotEquals (iexpr, iexpr') ->
          symbolic_neq
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Or (iexpr, iexpr') ->
          symbolic_or
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.ParameterValue (_, iref) when inl_par ->
          let id = string_of_reference iref in
          if is_main_parameter id (Lazy.force maps.parameters_map) then
            create_parameter
              (StringMap.find id (Lazy.force maps.parameters_map)).parameter_id
          else
            get_parameter_start id (Lazy.force maps.parameters_map)
      | Instantiation.ParameterValue (_, iref) ->
          let id = string_of_reference iref in
            create_parameter
              (StringMap.find id (Lazy.force maps.parameters_map)).parameter_id
      | Instantiation.Power (iexpr, iexpr') ->
          symbolic_power
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Pre iexpr ->
          symbolic_pre (symbolic_expression_of_expression' iexpr)
      | Instantiation.Real f -> create_number (num_of_float f)
      | Instantiation.Sin iexpr ->
          symbolic_sin (symbolic_expression_of_expression' iexpr)
      | Instantiation.Sinh iexpr ->
          symbolic_sinh (symbolic_expression_of_expression' iexpr)
      | Instantiation.Sqrt iexpr ->
          symbolic_sqrt (symbolic_expression_of_expression' iexpr)
      | Instantiation.String s -> create_string s
      | Instantiation.Subtraction (iexpr, iexpr') ->
          symbolic_sub
            (symbolic_expression_of_expression' iexpr)
            (symbolic_expression_of_expression' iexpr')
      | Instantiation.Tan iexpr ->
          symbolic_tan (symbolic_expression_of_expression' iexpr)
      | Instantiation.Tanh iexpr ->
          symbolic_tanh (symbolic_expression_of_expression' iexpr)
      | Instantiation.Time -> time
      | Instantiation.VariableStart (_, iref) ->
          let id = string_of_reference iref in
          begin try get_start_value id (Lazy.force maps.variables_map) with
            | Not_found ->
                get_start_value id (Lazy.force maps.discrete_variables_map)
          end
      | Instantiation.VariableValue (_, iref) -> create_variable_value iref
      | Instantiation.Vector iexprs ->
          invalid_arg "symbolic_expression_of_expression'"
  and create_variable_value iref =
    let id = string_of_reference iref in
    try
      create_variable
        (StringMap.find id (Lazy.force maps.variables_map)).variable_id
    with
      | _ ->
          try
            let dvar =
              StringMap.find id (Lazy.force maps.discrete_variables_map)
            in create_discrete_variable dvar.variable_id
          with
            | _ ->
                try
                  let inp = StringMap.find id (Lazy.force maps.inputs_map) in
                  create_discrete_variable (-1 - (inp.input_id))
                  (* Use of strictly negative values to be able to distinguish
                     inputs from other discrete variables. *)
                with
                  | _ -> assert false
  and function_name_of = function
    | [] -> assert false
    | [s] -> s
    | s :: ss -> function_name_of ss
  in symbolic_expression_of_expression' iexpr

let collect_external_function_names iequs =
  let rec add_if_not_in (name, in_types, out_types) = function
    | [] -> [name, in_types, out_types]
    | ((name', _, _) :: _) as name_and_types when name = name' ->
        name_and_types
    | name_and_type :: name_and_types ->
        name_and_type ::
        add_if_not_in (name, in_types, out_types) name_and_types in
  let rec collect_in_equations funcalls = function
    | [] -> funcalls
    | Instantiation.Equation (iexpr, iexpr') :: iequs' ->
        let funcalls = collect_in_expressions funcalls iexpr in
        let funcalls = collect_in_expressions funcalls iexpr' in
        collect_in_equations funcalls iequs'
    | Instantiation.ConditionalEquation (iif_equs, iequs) :: iequs' ->
        let funcalls = collect_in_if_clauses funcalls iif_equs in
        let funcalls = collect_in_equations funcalls iequs in
        collect_in_equations funcalls iequs'
    | Instantiation.When iwhen_clauses :: iequs' ->
        let funcalls = collect_in_when_clauses funcalls iwhen_clauses in
        collect_in_equations funcalls iequs'
    | Instantiation.FlowConnection _ :: _-> assert false
  and collect_in_if_clauses funcalls = function
    | [] -> funcalls
    | (iexpr, iequs) :: iif_equs ->
        let funcalls = collect_in_expressions funcalls iexpr in
        let funcalls = collect_in_equations funcalls iequs in
        collect_in_if_clauses funcalls iif_equs
  and collect_in_when_clauses funcalls = function
    | [] -> funcalls
    | (iexpr, iwhen_equs) :: iwhen_clauses ->
        let funcalls = collect_in_expressions funcalls iexpr in
        let funcalls =
          List.fold_left
            (fun
              funcalls
              (Instantiation.Reinit (iexpr, iexpr') |
              Instantiation.Assign (iexpr, iexpr')) ->
              let funcalls =
                collect_in_expressions funcalls iexpr
              in collect_in_expressions funcalls iexpr')
            funcalls
            iwhen_equs
        in collect_in_when_clauses funcalls iwhen_clauses
  and collect_in_expressions funcalls iexpr =
    match iexpr.Instantiation.tex_expression with
      | None -> funcalls
      | Some expr -> collect_in_expressions' funcalls expr
  and collect_in_expressions' funcalls = function
      | Instantiation.Addition (iexpr, iexpr') |
        Instantiation.And (iexpr, iexpr') |
        Instantiation.Division (iexpr, iexpr') |
        Instantiation.Equals (iexpr, iexpr') |
        Instantiation.GreaterEqualThan (iexpr, iexpr') |
        Instantiation.GreaterThan (iexpr, iexpr') |
        Instantiation.Max (iexpr, iexpr') | Instantiation.Min (iexpr, iexpr') |
        Instantiation.Mod (iexpr, iexpr') |
        Instantiation.Multiplication (iexpr, iexpr') |
        Instantiation.NotEquals (iexpr, iexpr') |
        Instantiation.Or (iexpr, iexpr') | Instantiation.Power (iexpr, iexpr') |
        Instantiation.Subtraction (iexpr, iexpr') ->
          let funcalls = collect_in_expressions funcalls iexpr in
          collect_in_expressions funcalls iexpr'
      | Instantiation.ExternalFunctionCall (name, in_types, out_types, iargs) ->
          let funcalls = add_if_not_in (name, in_types, out_types) funcalls in
          List.fold_left collect_in_arguments funcalls iargs
      | Instantiation.If (iif_exprs, iexpr) ->
          let funcalls =
            List.fold_left
              (fun funcalls (iexpr, iexpr') ->
                let funcalls = collect_in_expressions funcalls iexpr in
                collect_in_expressions funcalls iexpr')
              funcalls
              iif_exprs
          in collect_in_expressions funcalls iexpr
      | Instantiation.Minus iexpr | Instantiation.NoEvent iexpr |
        Instantiation.Not iexpr | Instantiation.Abs iexpr |
        Instantiation.Acos iexpr | Instantiation.Acosh iexpr |
        Instantiation.Cos iexpr | Instantiation.Cosh iexpr |
        Instantiation.Exp iexpr |
        Instantiation.Floor iexpr | Instantiation.Log iexpr |
        Instantiation.Asin iexpr | Instantiation.Asinh iexpr |
        Instantiation.Sin iexpr | Instantiation.Sinh iexpr |
        Instantiation.Sqrt iexpr |
        Instantiation.Atan iexpr | Instantiation.Atanh iexpr |
        Instantiation.Tan iexpr | Instantiation.Tanh iexpr |
        Instantiation.Pre iexpr -> collect_in_expressions funcalls iexpr
      | Instantiation.ParameterValue _ | Instantiation.Real _ |
        Instantiation.String _ | Instantiation.Time |
        Instantiation.VariableStart _ | Instantiation.VariableValue _ |
        Instantiation.Boolean _ | Instantiation.Der _ | Instantiation.Integer _ ->
          funcalls
      | Instantiation.Cardinality _ | Instantiation.CompoundElement _ |
        Instantiation.Vector _ -> assert false
  and collect_in_arguments funcalls = function
    | Instantiation.ScalarArgument iexpr ->
        collect_in_expressions funcalls iexpr
    | Instantiation.ArrayArgument (_, iexprs) ->
        Array.fold_left collect_in_expressions funcalls iexprs
  in collect_in_equations [] iequs

let separate_parameters_from_variables icpnts =
  let is_parameter = function
    | _, Instantiation.InstantiatedParameter _ -> true
    | _, Instantiation.InstantiatedVariable _ -> false
  in List.partition is_parameter icpnts

let separate_inputs_from_others icpnts =
  let is_input = function
    | Instantiation.InstantiatedIntegerVariable
        (_, Compilation.Input, _, _) |
      Instantiation.InstantiatedStringVariable
        (_, Compilation.Input, _, _) |
      Instantiation.InstantiatedDiscreteVariable
        (_, Compilation.Input, _, _) |
      Instantiation.InstantiatedRealVariable
        (_, Compilation.Input, _, _, _) ->
        true
    | Instantiation.InstantiatedIntegerVariable _ |
      Instantiation.InstantiatedStringVariable _ |
      Instantiation.InstantiatedDiscreteVariable _ |
      Instantiation.InstantiatedRealVariable _ |
      Instantiation.InstantiatedCompoundVariable _ -> false
  in
  let filter_variable = function
    | _, Instantiation.InstantiatedParameter _ -> false
    | _, Instantiation.InstantiatedVariable ivar -> is_input ivar
  in List.partition filter_variable icpnts

let separate_discrete_variables_from_others icpnts =
  let is_discrete = function
    | Instantiation.InstantiatedDiscreteVariable _ -> true
    | Instantiation.InstantiatedIntegerVariable _ |
      Instantiation.InstantiatedStringVariable _ |
      Instantiation.InstantiatedRealVariable _ |
      Instantiation.InstantiatedCompoundVariable _ -> false
  in
  let filter_variable = function
    | _, Instantiation.InstantiatedParameter _ -> false
    | _, Instantiation.InstantiatedVariable ivar -> is_discrete ivar
  in List.partition filter_variable icpnts

let separate_outputs_from_others icpnts =
  let is_output = function
    | Instantiation.InstantiatedIntegerVariable
        (_, Compilation.Output, _, _) |
      Instantiation.InstantiatedStringVariable
        (_, Compilation.Output, _, _) |
      Instantiation.InstantiatedDiscreteVariable
        (_, Compilation.Output, _, _) |
      Instantiation.InstantiatedRealVariable
        (_, Compilation.Output, _, _, _) ->
        true
    | Instantiation.InstantiatedIntegerVariable _ |
      Instantiation.InstantiatedStringVariable _ |
      Instantiation.InstantiatedDiscreteVariable _ |
      Instantiation.InstantiatedRealVariable _ |
      Instantiation.InstantiatedCompoundVariable _ -> false
  in
  let filter_variable = function
    | _, Instantiation.InstantiatedParameter _ -> false
    | _, Instantiation.InstantiatedVariable ivar -> is_output ivar
  in List.partition filter_variable icpnts

let create_dictionary get_contents maps icpnts =
  let rec add_entries i map = function
    | [] -> map
    | (s, icpnt) :: icpnts ->
        add_entries
          (i + 1)
          (StringMap.add s (get_contents maps s i icpnt) map)
          icpnts
  in add_entries 0 StringMap.empty icpnts

let separate_whens_from_equations iequs =
  let rec separate_whens_from_equations' whens equations = function
    | [] -> whens, equations
    | (Instantiation.Equation _ as iequ) :: iequs' ->
        separate_whens_from_equations' whens (iequ :: equations) iequs'
    | Instantiation.When iwhen_clauses :: iequs' ->
        separate_whens_from_equations' (whens @ iwhen_clauses) equations iequs'
    | Instantiation.ConditionalEquation _ :: _ |
      Instantiation.FlowConnection _ :: _ -> assert false
  in separate_whens_from_equations' [] [] iequs

let rewrite_when_condition expr =
  let rec contains_time expr = match nature expr with
    | BooleanValue _  | Constant _ | DiscreteVariable _ | Number _ |
      Parameter _ | Variable _ | Integer _ | String _ -> false
    | TimeVariable  -> true
    | ArcCosine node | ArcHyperbolicCosine node |
      ArcHyperbolicSine node | ArcHyperbolicTangent node | ArcSine node |
      ArcTangent node | Cosine node | Derivative (node, _) |
      Exponential node | Floor node | HyperbolicCosine node |
      HyperbolicSine node | HyperbolicTangent node | Logarithm node |
      Not node | Pre node | RationalPower (node, _) | Sign node | Sine node |
      Tangent node -> contains_time node
    | Equality (node1, node2) | Greater (node1, node2) |
      GreaterEqual (node1, node2) | PartialDerivative (node1, node2) ->
        contains_time node1 || contains_time node2
    | If (node1, node2, node3) ->
        contains_time node1 || contains_time node2 || contains_time node3
    | And nodes | Addition nodes | Multiplication nodes | Or nodes ->
        List.exists contains_time nodes
    | BlackBox (_, args) -> List.exists contains_time_argument args
  and contains_time_argument = function
    | ScalarArgument node -> contains_time node
    | ArrayArgument (_, nodes) -> exists_array contains_time nodes in
  let is_primary_condition expr =
    assignable_variables_of expr <> [] || contains_time expr in
  let rec rewrite expr = match nature expr with
    | Addition nodes -> apply_addition (List.map rewrite nodes)
    | And nodes -> apply_and (List.map rewrite nodes)
    | ArcCosine node -> symbolic_acos (rewrite node)
    | ArcHyperbolicCosine node -> symbolic_acosh (rewrite node)
    | ArcHyperbolicSine node -> symbolic_asinh (rewrite node)
    | ArcHyperbolicTangent node -> symbolic_atanh (rewrite node)
    | ArcSine node -> symbolic_asin (rewrite node)
    | ArcTangent node -> symbolic_atan (rewrite node)
    | BlackBox (s, args) -> apply_blackBox s (List.map rewrite_argument args)
    | Cosine node -> symbolic_cos (rewrite node)
    | Derivative (node, num) -> symbolic_derive (rewrite node) num
    | Equality (node, node') -> symbolic_eq (rewrite node) (rewrite node')
    | Exponential node -> symbolic_exp (rewrite node)
    | Floor node -> symbolic_floor (rewrite node)
    | Greater (node, node') -> symbolic_gt (rewrite node) (rewrite node')
    | GreaterEqual (node, node') -> symbolic_ge (rewrite node) (rewrite node')
    | HyperbolicCosine node -> symbolic_cosh (rewrite node)
    | HyperbolicSine node -> symbolic_sinh (rewrite node)
    | HyperbolicTangent node -> symbolic_tanh (rewrite node)
    | If (node, node', node'') ->
        symbolic_if (rewrite node) (rewrite node') (rewrite node'')
    | Logarithm node -> symbolic_log (rewrite node)
    | Multiplication nodes -> apply_multiplication (List.map rewrite nodes)
    | Not node -> symbolic_not (rewrite node)
    | Or nodes -> apply_or (List.map rewrite nodes)
    | PartialDerivative (node, node') ->
        create_partialDerivative (rewrite node) (rewrite node')
    | Pre node -> symbolic_pre (rewrite node)
    | RationalPower (node, num) -> symbolic_rationalPower (rewrite node) num
    | Sign node -> symbolic_sgn (rewrite node)
    | Sine node -> symbolic_sin (rewrite node)
    | Tangent node -> symbolic_tan (rewrite node)
    | BooleanValue _ | Constant _ | Number _ | Parameter _ |
      TimeVariable | Variable _ | Integer _ | String _ -> expr
    | DiscreteVariable _ -> symbolic_pre expr
  and rewrite_argument = function
    | ScalarArgument expr -> ScalarArgument (rewrite expr)
    | ArrayArgument (dims, exprs) ->
        ArrayArgument (dims, Array.map rewrite exprs) in
  if is_primary_condition expr then rewrite expr else expr

let symbolic_equation inl_par maps = function
  | Instantiation.Equation (iexpr, iexpr') ->
      let expr =
        symbolic_sub
          (symbolic_expression_of_expression inl_par maps iexpr)
          (symbolic_expression_of_expression inl_par maps iexpr')
      in
      {
        solved = false;
        inner_variables = variables_of expr;
        inner_derivatives = derivatives_of expr;
        assignable_variables = assignable_variables_of expr;
        expression = expr
      }
  | _ -> assert false

let symbolic_surfaces inl_par maps when_clauses =
  List.map
    (fun (iexpr, surfaces) ->
      let expr = symbolic_expression_of_expression inl_par maps iexpr in
      rewrite_when_condition expr,
      List.map
        (function
          | Instantiation.Reinit (iexpr, iexpr') ->
            let var = symbolic_expression_of_expression inl_par maps iexpr in
            begin match nature var with
              | Variable i ->
                  Reinit (var, symbolic_expression_of_expression inl_par maps iexpr')
              | _ -> assert false
            end
          | Instantiation.Assign (iexpr, iexpr') ->
            let var = symbolic_expression_of_expression inl_par maps iexpr in
            begin match nature var with
              | DiscreteVariable i ->
                  Assign (var, symbolic_expression_of_expression inl_par maps iexpr')
              | Variable i ->
                  Reinit (var, symbolic_expression_of_expression inl_par maps iexpr')
              | _ -> assert false
            end)
        surfaces)
    when_clauses

let propagate_noEvent expr =
  (* such that 'noEvent' only appears in conditions *)
  let rec propagate_noEvent' no_event expr = match nature expr with
    | And exprs' ->
        create_and (sort (List.map (propagate_noEvent' no_event) exprs'))
    | ArcCosine expr' -> create_arcCosine (propagate_noEvent' no_event expr')
    | ArcHyperbolicCosine expr' ->
        create_arcHyperbolicCosine (propagate_noEvent' no_event expr')
    | ArcHyperbolicSine expr' ->
        create_arcHyperbolicSine (propagate_noEvent' no_event expr')
    | ArcHyperbolicTangent expr' ->
        create_arcHyperbolicTangent (propagate_noEvent' no_event expr')
    | ArcSine expr' -> create_arcSine (propagate_noEvent' no_event expr')
    | ArcTangent expr' -> create_arcTangent (propagate_noEvent' no_event expr')
    | Cosine expr' -> create_cosine (propagate_noEvent' no_event expr')
    | Derivative (expr', num) ->
        create_derivative (propagate_noEvent' no_event expr') num
    | Equality (expr', expr'') ->
        create_equality
          (propagate_noEvent' no_event expr')
          (propagate_noEvent' no_event expr'')
    | Exponential expr' ->
        create_exponential (propagate_noEvent' no_event expr')
    | Floor expr' -> create_floor (propagate_noEvent' no_event expr')
    | Greater (expr', expr'') ->
        create_greater
          (propagate_noEvent' no_event expr')
          (propagate_noEvent' no_event expr'')
    | GreaterEqual (expr', expr'') ->
        create_greater_equal
          (propagate_noEvent' no_event expr')
          (propagate_noEvent' no_event expr'')
    | HyperbolicCosine expr' ->
        create_hyperbolicCosine (propagate_noEvent' no_event expr')
    | HyperbolicSine expr' ->
        create_hyperbolicSine (propagate_noEvent' no_event expr')
    | HyperbolicTangent expr' ->
        create_hyperbolicTangent (propagate_noEvent' no_event expr')
    | Logarithm expr' -> create_logarithm (propagate_noEvent' no_event expr')
    | Pre expr' -> create_pre (propagate_noEvent' no_event expr')
    | RationalPower (expr', num) ->
        create_rationalPower (propagate_noEvent' no_event expr') num
    | Sign expr' -> create_sign (propagate_noEvent' no_event expr')
    | Sine expr' -> create_sine (propagate_noEvent' no_event expr')
    | Tangent expr' -> create_tangent (propagate_noEvent' no_event expr')
    | Addition exprs' ->
        create_addition (sort (List.map (propagate_noEvent' no_event) exprs'))
    | BlackBox ("noEvent", [ScalarArgument expr']) -> propagate_noEvent' true expr'
    | BlackBox (name, args) ->
        create_blackBox
          name
          (List.map (propagate_noEvent_into_argument no_event) args)
    | Multiplication exprs' ->
        create_multiplication
          (sort (List.map (propagate_noEvent' no_event) exprs'))
    | Not expr' -> create_not (propagate_noEvent' no_event expr')
    | Or exprs' ->
        create_or (sort (List.map (propagate_noEvent' no_event) exprs'))
    | PartialDerivative (expr', expr'') ->
        create_partialDerivative
          (propagate_noEvent' no_event expr')
          (propagate_noEvent' no_event expr'')
    | If (expr', expr'', expr''') ->
        propagate_noEvent_into_if no_event expr' expr'' expr'''
    | BooleanValue _ | Constant _ | DiscreteVariable _ | Number _ |
      Parameter _ | TimeVariable | Variable _ | Integer _ | String _ -> expr
  and propagate_noEvent_into_argument no_event = function
    | ScalarArgument expr -> ScalarArgument (propagate_noEvent' no_event expr)
    | ArrayArgument (dims, exprs) ->
        ArrayArgument (dims, Array.map (propagate_noEvent' no_event) exprs)
  and propagate_noEvent_into_if no_event expr expr' expr'' =
    let cond =
      if no_event then
        create_blackBox "noEvent" [ScalarArgument (propagate_noEvent' false expr)]
      else begin match nature expr with
        | BlackBox ("noEvent", [ScalarArgument expr']) ->
            create_blackBox
              "noEvent"
              [ScalarArgument (propagate_noEvent' false expr)]
        | _ -> propagate_noEvent' false expr
      end
    in
    create_if
      cond
      (propagate_noEvent' no_event expr')
      (propagate_noEvent' no_event expr'')
  in propagate_noEvent' false expr

let create_model' trace inl_par iexpr =
  let lazy_symbolic_expression_of_expression maps iexpr =
    match iexpr.Instantiation.tex_expression with
    | None -> None
    | Some _ ->
        Some (lazy (symbolic_expression_of_expression inl_par maps iexpr))
  in
  let get_parameter_info maps s i = function
    | Instantiation.InstantiatedParameter (
        Instantiation.InstantiatedIntegerParameter (s', kind, iexpr, _)) ->
        {
          parameter_kind = kind;
          parameter_type = IntegerType;
          parameter_id = i;
          parameter_comment = s';
          parameter_start = lazy
            (symbolic_expression_of_expression inl_par maps iexpr)
        }
    | Instantiation.InstantiatedParameter (
        Instantiation.InstantiatedStringParameter (s', kind, iexpr, _)) ->
        {
          parameter_kind = kind;
          parameter_type = StringType;
          parameter_id = i;
          parameter_comment = s';
          parameter_start = lazy
            (symbolic_expression_of_expression inl_par maps iexpr)
        }
    | Instantiation.InstantiatedParameter (
        Instantiation.InstantiatedRealParameter (s', kind, iexpr, _)) ->
        {
          parameter_kind = kind;
          parameter_type = RealType;
          parameter_id = i;
          parameter_comment = s';
          parameter_start = lazy
            (symbolic_expression_of_expression inl_par maps iexpr)
        }
    | _ -> assert false
  and get_input_info maps s i = function
    | Instantiation.InstantiatedVariable (
        Instantiation.InstantiatedDiscreteVariable (s', _, _, _)) |
      Instantiation.InstantiatedVariable (
        Instantiation.InstantiatedRealVariable (s', _, _, _, _)) ->
        {
          input_id = i;
          input_name = s;
          input_comment = s'
        }
    | _ -> assert false
  and get_variable_info maps s i = function
    | Instantiation.InstantiatedVariable (
        Instantiation.InstantiatedDiscreteVariable (s', _, iexpr, _)) |
      Instantiation.InstantiatedVariable (
        Instantiation.InstantiatedRealVariable (s', _, _, iexpr, _)) ->
        {
          variable_id = i;
          variable_comment = s';
          variable_start = lazy_symbolic_expression_of_expression maps iexpr
        }
    | _ -> assert false
  in
  let derived_variables ders =
    List.fold_left
      (fun vars der ->
        match nature der with
          | Derivative (expr, num) when num = Num.Int 1 ->
              begin match nature expr with
                | Variable _ -> expr :: vars
                | _ -> assert false
              end
          | _ -> assert false)
      []
      ders
  in
  let add_variable_infos acc (id, icpnt) = match icpnt with
    | Instantiation.InstantiatedVariable
        (Instantiation.InstantiatedDiscreteVariable (_, _, _, var_infos) |
         Instantiation.InstantiatedRealVariable (_, _, _, _, var_infos)) ->
        (id, var_infos) :: acc
    | Instantiation.InstantiatedParameter
        (Instantiation.InstantiatedIntegerParameter (_, _, _, pat_infos) |
         Instantiation.InstantiatedRealParameter (_, _, _, pat_infos)) ->
        (id, pat_infos) :: acc
    | _ -> acc
  in
  let icpnts, iinit_equs, iequs = Instantiation.expand_class iexpr in
  let variables_infos =
    List.fold_left add_variable_infos [] icpnts in
  let parameters, variables = separate_parameters_from_variables icpnts in
  let inputs, non_inputs = separate_inputs_from_others variables in
  let discrete_variables, others =
    separate_discrete_variables_from_others non_inputs in
  let outputs, _ = separate_outputs_from_others non_inputs in
  let name_and_types =
    collect_external_function_names iequs @
    collect_external_function_names iinit_equs in
  let rec maps =
    {
      parameters_map =
        lazy (create_dictionary get_parameter_info maps parameters);
      inputs_map =
        lazy (create_dictionary get_input_info maps inputs);
      discrete_variables_map =
       lazy (create_dictionary get_variable_info maps discrete_variables);
      variables_map =
        lazy (create_dictionary get_variable_info maps others)
    }
  in
  let when_clauses, equations = separate_whens_from_equations iequs in
  let nb_parameters = map_length (Lazy.force maps.parameters_map)
  and nb_inputs = map_length (Lazy.force maps.inputs_map)
  and nb_discrete_vars = map_length (Lazy.force maps.discrete_variables_map)
  and nb_vars = map_length (Lazy.force maps.variables_map)
  and nb_equs = List.length equations in
  if nb_equs <> nb_vars then
    failwith
      ("The number of equations doesn't match the number of variables: " ^
      string_of_int nb_equs ^ " equations and " ^ string_of_int nb_vars ^
      " variables.")
  else
    let parameters_array =
      Array.init
        nb_parameters
        (fun _ ->
          {
            main = false;
            p_type = IntegerType;
            p_name = "";
            p_comment = "";
            value = zero
          })
    and inputs_array = Array.make nb_inputs ""
    and discrete_variables_array =
      Array.init
        nb_discrete_vars
        (fun _ ->
          {
            d_output = None;
            d_v_name = "";
            d_v_comment = "";
            d_start_value = Some zero
          })
    and variables_array =
      Array.init
        nb_vars
        (fun _ ->
          {
            output = None;
            state = true;
            v_name = "";
            depth_in_hierarchy = 0;
            v_comment = "";
            start_value = Some zero
          })
    and equations_array =
      Array.init
        nb_equs
        (fun _ ->
          {
            solved = false;
            inner_variables = [];
            inner_derivatives = [];
            assignable_variables = [];
            expression = zero
          })
    in
    let output_index s outputs =
      let rec output_index' i = function
        | [] -> None
        | (s', _) :: _ when s' = s -> Some i
        | _ :: outputs' -> output_index' (i + 1) outputs'
      in output_index' 0 outputs
    in
    let number_of_dots s =
      let count = ref 0 in
      for i = 0 to String.length s - 1 do
        if s.[i] = '.' then incr count;
      done;
      !count
    in
    let _ =
      List.fold_left
        (fun i equ ->
          assert (i < Array.length equations_array);
          equations_array.(i) <- symbolic_equation inl_par maps equ; i + 1)
        0
        equations
    in ();
    let derived_variables =
      Array.fold_left
        (fun vars equation ->
          union vars (derived_variables equation.inner_derivatives))
        []
        equations_array
    in
    StringMap.iter
      (fun s param ->
        assert (param.parameter_id < Array.length parameters_array);
        let parameter = parameters_array.(param.parameter_id) in
        parameter.main <- param.parameter_kind = Instantiation.Main;
        parameter.p_type <- param.parameter_type;
        parameter.p_name <- s;
        parameter.p_comment <- param.parameter_comment;
        parameter.value <- Lazy.force param.parameter_start)
      (Lazy.force maps.parameters_map);
    StringMap.iter
      (fun _ inp ->
        assert (inp.input_id < Array.length inputs_array);
        inputs_array.(inp.input_id) <- inp.input_name)
      (Lazy.force maps.inputs_map);
    StringMap.iter
      (fun s dvar ->
        assert (dvar.variable_id < Array.length discrete_variables_array);
        let variable = discrete_variables_array.(dvar.variable_id) in
        variable.d_output <- output_index s outputs;
        variable.d_v_name <- s;
        variable.d_v_comment <- dvar.variable_comment;
        variable.d_start_value <-
          match dvar.variable_start with
            | None -> None
            | Some lexpr -> Some (Lazy.force lexpr))
      (Lazy.force maps.discrete_variables_map);
    StringMap.iter
      (fun s var ->
        assert (var.variable_id < Array.length variables_array);
        let variable = variables_array.(var.variable_id) in
        variable.output <- output_index s outputs;
        variable.state <-
          List.memq (create_variable var.variable_id) derived_variables;
        variable.v_name <- s;
        variable.depth_in_hierarchy <- number_of_dots s;
        variable.v_comment <- var.variable_comment;
        variable.start_value <-
          match var.variable_start with
            | None -> None
            | Some lexpr -> Some (Lazy.force lexpr))
      (Lazy.force maps.variables_map);
    let when_clauses_list = symbolic_surfaces inl_par maps when_clauses in
    let reinitializable_variables =
      let add_non_discrete_variables vars = function
        | Reinit (var, _) when not (List.memq var vars) -> var :: vars
        | _ -> vars
      in
      List.fold_left
        (fun vars (_, when_expr) ->
          List.fold_left add_non_discrete_variables vars when_expr)
        []
        when_clauses_list
    in
    Array.iter
      (fun equation ->
        equation.expression <- propagate_noEvent equation.expression)
      equations_array;
    {
      parameters = parameters_array;
      inputs = inputs_array;
      discrete_variables = discrete_variables_array;
      variables = variables_array;
      equations = equations_array;
      reinitializable_variables = reinitializable_variables;
      when_clauses = when_clauses_list;
      io_dependency = false;
      external_functions = name_and_types;
      trace = trace;
      variables_infos = variables_infos
    }

let create_model_with_parameters trace iexpr = create_model' trace false iexpr

let create_model trace iexpr = create_model' trace true iexpr

let print_model oc model =
  Printf.fprintf
    oc
    "Number of variables before simplifications: %d\n"
    (Array.length model.variables);
  Printf.fprintf
    oc
    "Number of variables after simplifications: %d\n"
    (Array.fold_left
      (fun n equation -> if equation.solved then n else n + 1)
      0
      model.equations);
  Printf.fprintf
    oc
    "Direct input/ouput dependency: %s\n"
    (if model.io_dependency then "yes" else "no");
  Array.iteri
    (fun i variable ->
      Printf.fprintf
        oc
        "variable (%d) (%s): %s %s variable (%ssolved)\n"
        i
        variable.v_name
        (if variable.output <> None then "output" else "intermediate")
        (if variable.state then "state" else "algebraic")
        (if model.equations.(i).solved then "" else "not "))
    model.variables;
  Array.iteri
    (fun i equation ->
      Printf.fprintf oc "equation(%d): " i;
      if equation.solved then output oc (create_variable i)
      else Printf.fprintf oc "0";
      Printf.fprintf oc " = ";
      output oc equation.expression;
      Printf.fprintf oc "\n")
    model.equations

let create_index_array a p =
  let size = Array.length a in
  let indexes = Array.make size (-1) in
  let j = ref 0 in
  Array.iteri (fun i x -> if p x then begin indexes.(i) <- !j; incr j end) a;
  indexes

let final_index_of_integer_parameters model =
  create_index_array model.parameters (fun par -> par.p_type = IntegerType)

let final_index_of_string_parameters model =
  create_index_array model.parameters (fun par -> par.p_type = StringType)

let final_index_of_real_parameters model =
  create_index_array model.parameters (fun par -> par.p_type = RealType)

let final_index_of_variables model =
  create_index_array model.equations (fun equation -> not equation.solved)

let permute_equations model assocs =
  let equations = Array.copy model.equations in
  List.iter
    (function
      | i, Some j -> equations.(i) <- model.equations.(j)
      | _, None -> assert false)
    assocs;
  model.equations <- equations

let perform_then_propagate_inversion model i =
  let update_clauses var expr' clauses =
    List.map
      (fun (expr, updates) ->
        replace var expr' expr,
        List.map
          (function
            | Assign (expr1, expr2) ->
                Assign (expr1, replace var expr' expr2)
            | Reinit (expr1, expr2) ->
                Reinit (expr1, replace var expr' expr2))
          updates)
      clauses
  in
  let var = create_variable i
  and equation = model.equations.(i) in
  let expr = equation.expression in
  try match invert_if_possible_with_respect_to var expr zero with
    | None -> false
    | Some expr' ->
        if not (List.memq var model.reinitializable_variables) then begin
          equation.expression <- expr';
          equation.solved <- true;
          let additional_variables = variables_of expr' in
          Array.iteri
            (fun j equation ->
              if i <> j && List.memq var equation.inner_variables then begin
                equation.expression <- replace var expr' equation.expression;
                equation.inner_variables <-
                  union equation.inner_variables additional_variables
              end)
            model.equations;
          model.when_clauses <- update_clauses var expr' model.when_clauses
        end;
        true
  with Invalid_argument _ -> raise Can't_perform_inversion

let compute_io_dependency model =
  let rec compute_io_dependency' i =
    if not (i = Array.length model.variables) then
      if
        model.variables.(i).output <> None &&
        exists
          (fun node -> match nature node with
            | DiscreteVariable i when i < 0 -> true
            | _ -> false)
          model.equations.(i).expression
      then
        model.io_dependency <- true
      else
        compute_io_dependency' (i + 1)
  in compute_io_dependency' 0

let perform_hungarian_method model =
  let size =
    Array.fold_left
      (fun acc equation -> if equation.solved then acc else acc + 1)
      0
      model.equations
  in
  let () =
    Array.iter
      (fun equation ->
        if not equation.solved then begin
          equation.inner_variables <- variables_of equation.expression;
          equation.inner_derivatives <- derivatives_of equation.expression;
          equation.assignable_variables <-
            assignable_variables_of equation.expression
        end)
      model.equations
  in
  let table = Array.make size 0 in
  let i = ref 0 in
  for j = 0 to Array.length model.equations - 1 do
    if not model.equations.(j).solved then begin
      table.(!i) <- j; incr i
    end
  done;
  let weight i j =
    let m = table.(i)
    and n = table.(j) in
    let var = create_variable m in
    let discontinuous_state () =
      let not_derivative_of_current_variable e = match nature e with
        | Derivative (var', _) -> var' != var
        | _ -> true in
      List.for_all
        not_derivative_of_current_variable
        model.equations.(n).inner_derivatives &&
      List.memq var model.reinitializable_variables in
    if not (List.memq var model.equations.(n).assignable_variables) then
      IntegerElement.Infinity
    else if discontinuous_state () then
      IntegerElement.Int (size + 1)
    else match inversion_difficulty var model.equations.(n).expression zero with
        | 0 -> IntegerElement.zero
        | 1 -> IntegerElement.Int 1
        | 2 -> IntegerElement.Int (size + 1)
        | _ -> IntegerElement.Infinity
  in
  let strct = IntegerHungarianMethod.init size weight in
  let assocs = IntegerHungarianMethod.perform strct in
  let assocs' =
    List.map
      (function
        | i, Some j -> table.(i), Some table.(j)
        | _, None ->
            failwith "perform_hungarian_method: jacobian is structurally singular")
      assocs
  in
  assert (
    let rec check_results1 = function
      | [] -> true
      | (_, x) :: xs when List.exists (fun (_, y) -> x = y) xs -> false
      | _ :: xs -> check_results1 xs
    in check_results1 assocs');
  assert (
    let check_results2 = function
      | (i, Some j) :: assocs ->
          let var = create_variable i in
          List.memq var model.equations.(j).inner_variables
      | _ -> true
    in check_results2 assocs');
  assocs'

let eliminate_trivial_relations max_simplifs model =
  let max_simplifs_ref = ref max_simplifs in
  let choose_variable i j =
    let sti = model.variables.(i).state
    and depi = model.variables.(i).depth_in_hierarchy
    and stj = model.variables.(j).state
    and depj = model.variables.(j).depth_in_hierarchy in
    match sti, stj with
      | true, false -> j
      | false, true -> i
      | true, true | false, false ->
          let svi = model.variables.(i).start_value
          and svj = model.variables.(j).start_value in
          begin match svi, svj with
            | None, Some _ -> i
            | Some _, None -> j
            | _ when depj > depi -> i
            | _ -> j
          end
  in
  let permute_equations i j =
    let equation = model.equations.(i) in
    model.equations.(i) <- model.equations.(j);
    model.equations.(j) <- equation
  in
  let update_variable_attributes i j =
    let svi = model.variables.(i).start_value
    and svj = model.variables.(j).start_value in
    match svi, svj with
      | None, _ -> model.variables.(i).start_value <- svj
      | _, None -> model.variables.(j).start_value <- svi
      | _ -> ()
  in
  let simplify_trivial_relation n =
    match nature model.equations.(n).expression with
      | Addition [node; node'] when !max_simplifs_ref >= 0 ->
          begin match nature node, nature node' with
            | Variable i, Number _ | Number _, Variable i ->
                permute_equations i n;
                ignore (perform_then_propagate_inversion model i);
                decr max_simplifs_ref
            | Variable i, Multiplication [node; node'] |
              Multiplication [node; node'], Variable i ->
                begin match nature node, nature node' with
                  | Number (Num.Int (-1)), Variable j |
                    Variable j, Number (Num.Int (-1)) ->
                      let k = choose_variable i j in
                      update_variable_attributes i j;
                      permute_equations k n;
                      ignore (perform_then_propagate_inversion model k);
                      decr max_simplifs_ref
                  | _ -> ()
                end
            | _ -> ()
          end
      | _ -> ()
  in
  for i = 0 to Array.length model.equations - 1 do
    simplify_trivial_relation i
  done;
  !max_simplifs_ref

let eliminate_explicit_variables max_simplifs model =
  let is_continuous_state var =
    not (List.memq var model.reinitializable_variables) in
  let is_state_variable expr = match nature expr with
    | Variable j -> model.variables.(j).state
    | _ -> false in
  let try_reducing_state var i =
    let vars = model.equations.(i).assignable_variables
    and ders = model.equations.(i).inner_derivatives in
    if not (List.memq (symbolic_derive var (Num.Int 1)) ders) then begin
      Printf.eprintf "\nTrying to reduce state...";
      match ders with
      | [] when List.for_all is_state_variable vars ->
          let success = perform_then_propagate_inversion model i in
          if success then Printf.eprintf " One state variable removed.%!"
          else Printf.eprintf " Failed.%!"
      | _ ->  Printf.eprintf " Failed.%!"
    end in
  let rec eliminate_explicit_variables' simplifs =
    let assocs = perform_hungarian_method model in
    permute_equations model assocs;
    let bad_variable_choice, success, simplifs =
      List.fold_left
        (fun (bad_variable_choice, success, simplifs) assoc ->
          match assoc with
            | _, None -> assert false
            | i, Some j when simplifs >= 0 ->
                begin try
                  if not model.variables.(i).state then
                    ignore (perform_then_propagate_inversion model i)
                  else begin
                    let var = create_variable i in
                    if is_continuous_state var then try_reducing_state var i
                  end;
                  bad_variable_choice, model.equations.(i).solved, simplifs - 1
                with
                  | Can't_perform_inversion -> true, success, simplifs
                end
            | _ -> bad_variable_choice, success, simplifs)
        (false, false, simplifs)
        assocs
    in
    if bad_variable_choice || success then
      eliminate_explicit_variables' simplifs
  in eliminate_explicit_variables' max_simplifs

let rec rewrite_conditions_in no_event expr =
  let rec remove_no_event expr = match nature expr with
    | ArcCosine expr' -> create_arcCosine (remove_no_event expr')
    | ArcHyperbolicCosine expr' ->
        create_arcHyperbolicCosine (remove_no_event expr')
    | ArcHyperbolicSine expr' ->
        create_arcHyperbolicSine (remove_no_event expr')
    | ArcHyperbolicTangent expr' ->
        create_arcHyperbolicTangent (remove_no_event expr')
    | ArcSine expr' -> create_arcSine (remove_no_event expr')
    | ArcTangent expr' -> create_arcTangent (remove_no_event expr')
    | Cosine expr' -> create_cosine (remove_no_event expr')
    | Derivative (expr', num) ->
        create_derivative (remove_no_event expr') num
    | Exponential expr' -> create_exponential (remove_no_event expr')
    | Floor expr' -> create_floor (remove_no_event expr')
    | HyperbolicCosine expr' ->
        create_hyperbolicCosine (remove_no_event expr')
    | HyperbolicSine expr' ->
        create_hyperbolicSine (remove_no_event expr')
    | HyperbolicTangent expr' ->
        create_hyperbolicTangent (remove_no_event expr')
    | Logarithm expr' -> create_logarithm (remove_no_event expr')
    | Pre expr' -> create_pre (remove_no_event expr')
    | RationalPower (expr', num) ->
        create_rationalPower (remove_no_event expr') num
    | Sign expr' -> create_sign (remove_no_event expr')
    | Sine expr' -> create_sine (remove_no_event expr')
    | Tangent expr' -> create_tangent (remove_no_event expr')
    | Addition exprs' ->
        create_addition (sort (List.map remove_no_event exprs'))
    | BlackBox ("noEvent", [ScalarArgument expr']) ->
        rewrite_conditions_in true expr'
    | BlackBox (name, args) ->
        create_blackBox name (List.map remove_no_event_in_argument args)
    | Multiplication exprs' ->
        create_multiplication (sort (List.map remove_no_event exprs'))
    | PartialDerivative (expr', expr'') ->
        create_partialDerivative
          (remove_no_event expr')
          (remove_no_event expr'')
    | If (expr', expr'', expr''') ->
        create_if
          (remove_no_event expr')
          (remove_no_event expr'')
          (remove_no_event expr''')
    | Equality (expr', expr'') ->
        create_equality
          (remove_no_event expr')
          (remove_no_event expr'')
    | Greater (expr', expr'') ->
        create_greater
          (remove_no_event expr')
          (remove_no_event expr'')
    | GreaterEqual (expr', expr'') ->
        create_greater_equal
          (remove_no_event expr')
          (remove_no_event expr'')
    | And exprs -> create_and (List.map remove_no_event exprs)
    | Or exprs ->  create_or (List.map remove_no_event exprs)
    | Not expr' -> create_not (remove_no_event expr')
    | BooleanValue _ | Constant _ | DiscreteVariable _ | Number _ |
      Parameter _ | TimeVariable | Variable _ | Integer _ | String _ -> expr
  and remove_no_event_in_argument = function
    | ScalarArgument expr -> ScalarArgument (remove_no_event expr)
    | ArrayArgument (dims, exprs) ->
        ArrayArgument (dims, Array.map remove_no_event exprs) in
  match nature expr with
    | ArcCosine expr' -> create_arcCosine (rewrite_conditions_in no_event expr')
    | ArcHyperbolicCosine expr' ->
        create_arcHyperbolicCosine (rewrite_conditions_in no_event expr')
    | ArcHyperbolicSine expr' ->
        create_arcHyperbolicSine (rewrite_conditions_in no_event expr')
    | ArcHyperbolicTangent expr' ->
        create_arcHyperbolicTangent (rewrite_conditions_in no_event expr')
    | ArcSine expr' -> create_arcSine (rewrite_conditions_in no_event expr')
    | ArcTangent expr' -> create_arcTangent (rewrite_conditions_in no_event expr')
    | Cosine expr' -> create_cosine (rewrite_conditions_in no_event expr')
    | Derivative (expr', num) ->
        create_derivative (rewrite_conditions_in no_event expr') num
    | Exponential expr' -> create_exponential (rewrite_conditions_in no_event expr')
    | Floor expr' -> create_floor (rewrite_conditions_in no_event expr')
    | HyperbolicCosine expr' ->
        create_hyperbolicCosine (rewrite_conditions_in no_event expr')
    | HyperbolicSine expr' ->
        create_hyperbolicSine (rewrite_conditions_in no_event expr')
    | HyperbolicTangent expr' ->
        create_hyperbolicTangent (rewrite_conditions_in no_event expr')
    | Logarithm expr' -> create_logarithm (rewrite_conditions_in no_event expr')
    | Pre expr' -> create_pre (rewrite_conditions_in no_event expr')
    | RationalPower (expr', num) ->
        create_rationalPower (rewrite_conditions_in no_event expr') num
    | Sign expr' -> create_sign (rewrite_conditions_in no_event expr')
    | Sine expr' -> create_sine (rewrite_conditions_in no_event expr')
    | Tangent expr' -> create_tangent (rewrite_conditions_in no_event expr')
    | Addition exprs' ->
        create_addition (sort (List.map (rewrite_conditions_in no_event) exprs'))
    | BlackBox ("noEvent", [ScalarArgument expr']) ->
        rewrite_conditions_in true expr'
    | BlackBox (name, args) ->
        create_blackBox
          name
          (List.map (rewrite_conditions_in_argument no_event) args)
    | Multiplication exprs' ->
        create_multiplication (sort (List.map (rewrite_conditions_in no_event) exprs'))
    | PartialDerivative (expr', expr'') ->
        create_partialDerivative
          (rewrite_conditions_in no_event expr')
          (rewrite_conditions_in no_event expr'')
    | If (expr', expr'', expr''') ->
        create_if
          (rewrite_conditions_in no_event expr')
          (rewrite_conditions_in no_event expr'')
          (rewrite_conditions_in no_event expr''')
    | Equality (expr', expr'') when no_event ->
        create_blackBox
          "noEvent"
          [ScalarArgument
            (create_equality
              (remove_no_event expr')
              (remove_no_event expr''))]
    | Equality (expr', expr'') ->
        create_equality
          (remove_no_event expr')
          (remove_no_event expr'')
    | Greater (expr', expr'') when no_event ->
        create_blackBox
          "noEvent"
          [ScalarArgument
            (create_greater
              (remove_no_event expr')
              (remove_no_event expr''))]
    | Greater (expr', expr'') ->
        create_greater
          (remove_no_event expr')
          (remove_no_event expr'')
    | GreaterEqual (expr', expr'') when no_event ->
        create_blackBox
          "noEvent"
          [ScalarArgument
            (create_greater_equal
              (remove_no_event expr')
              (remove_no_event expr''))]
    | GreaterEqual (expr', expr'') ->
        create_greater_equal
          (remove_no_event expr')
          (remove_no_event expr'')
    | And exprs when no_event ->
        create_blackBox
          "noEvent"
          [ScalarArgument (create_and (List.map remove_no_event exprs))]
    | And exprs -> create_and (List.map remove_no_event exprs)
    | Or exprs when no_event ->
        create_blackBox
          "noEvent"
          [ScalarArgument (create_or (List.map remove_no_event exprs))]
    | Or exprs -> create_or (List.map remove_no_event exprs)
    | Not expr' when no_event ->
        create_blackBox
          "noEvent"
          [ScalarArgument (create_not (remove_no_event expr'))]
    | Not expr' -> create_not (remove_no_event expr')
    | BooleanValue _ | Constant _ | DiscreteVariable _ | Number _ |
      Parameter _ | TimeVariable | Variable _ | Integer _ | String _ -> expr
  and rewrite_conditions_in_argument no_event = function
    | ScalarArgument expr ->
        ScalarArgument (rewrite_conditions_in no_event expr)
    | ArrayArgument (dims, exprs) ->
        ArrayArgument
          (dims, Array.map (rewrite_conditions_in no_event) exprs)

let perform_simplifications max_simplifs model =
  Array.iter
    (fun equation ->
      equation.expression <- rewrite_conditions_in false equation.expression)
    model.equations;
  eliminate_explicit_variables max_simplifs model;
  compute_io_dependency model

let find_submodels model =
  let final_index_of_variables = final_index_of_variables model in
  let size =
    Array.fold_left
      (fun acc i -> if i >= 0 then acc + 1 else acc)
      0
      final_index_of_variables
  in
  let graph = CausalityGraph.create size in
  Array.iteri
    (fun i equation ->
      if not equation.solved then
        List.iter
          (fun expr ->
            match nature expr with
              | Variable j ->
                  if not model.equations.(j).solved then
                    let i' = final_index_of_variables.(i)
                    and j' = final_index_of_variables.(j) in
                    CausalityGraph.connect i' j' graph
              | _ -> assert false)
          equation.inner_variables)
    model.equations;
  CausalityGraph.strongly_connected_components graph