1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
#include <math.h>
#include "grand.h"
#include "core_math.h"
double C2F(genbet)(double *aa, double *bb)
/*
**********************************************************************
This source code was taken in the project "freemat"(BSD license)
This source code was modified by Gaüzère Sabine according to the
modifications done by JJV
float genbet(float aa,float bb)
GeNerate BETa random deviate
Function
Returns a single random deviate from the beta distribution with
parameters A and B. The density of the beta is
x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x < 1
Arguments
A --> First parameter of the beta distribution
DOUBLE PRECISION A
JJV (A > 1.0E-37)
B --> Second parameter of the beta distribution
DOUBLE PRECISION B
JJV (B > 1.0E-37)
Method
R. C. H. Cheng
Generating Beta Variatew with Nonintegral Shape Parameters
Communications of the ACM, 21:317-322 (1978)
(Algorithms BB and BC)
**********************************************************************
*/
{
#define expmax 87.498222998046875
#define infnty 1.0E38
#define minlog 1.0E-37
static double olda = -1.0E37;
static double oldb = -1.0E37;
static double genbet, a, alpha, b, beta, delta, gamma, k1, k2, r, s, t, u1, u2, v, w, y, z;
static int qsame;
qsame = olda == *aa && oldb == *bb;
if (qsame)
{
goto S20;
}
//if(!(aa <= 0.0 || bb <= 0.0)) goto S10;
// Scierror(999, "RANLIB Error: AA or BB <= 0 in GENBET - Abort!");
// JJV added small minimum for small log problem in calc of W
// in Rand.c
#ifndef _MSC_VER
// warning C4102: 'S10' : unreferenced label
S10:
#endif
olda = *aa;
oldb = *bb;
S20:
if (!(Min(*aa, *bb) > 1.0))
{
goto S100;
}
/*
Alborithm BB
Initialize
*/
if (qsame)
{
goto S30;
}
a = Min(*aa, *bb);
b = Max(*aa, *bb);
alpha = a + b;
beta = sqrt((alpha - 2.0) / (2.0 * a * b - alpha));
gamma = a + 1.0 / beta;
S30:
S40:
u1 = C2F(ranf)();
/*
Step 1
*/
u2 = C2F(ranf)();
v = beta * log(u1 / (1.0 - u1));
// JJV altered this
if (v > expmax)
{
goto S55;
}
// JJV added checker to see if a*exp(v) will overflow
// JJV 50 _was_ w = a*exp(v); also note here a > 1.0
// if(!(v > expmax)) goto S50;
// w = infnty;
// goto S60;
#ifndef _MSC_VER
// warning C4102: 'S50' : unreferenced label
S50:
#endif
w = exp(v);
if (w > (infnty / a))
{
goto S55;
}
w *= a;
goto S60;
S55:
w = infnty;
S60:
z = pow(u1, 2.0f) * u2;
r = gamma * v - 1.3862943649291992188;
s = a + r - w;
/*
Step 2
*/
if (s + 2.6094379425048828125 >= 5.0 * z)
{
goto S70;
}
/*
Step 3
*/
t = log(z);
if (s > t)
{
goto S70;
}
/*
Step 4
*/
// JJV added checker to see if log(alpha/(b+w)) will
// JJV overflow. If so, we count the log as -INF, and
// JJV consequently evaluate conditional as true, i.e.
// JJV the algorithm rejects the trial and starts over
// JJV May not need this here since ALPHA > 2.0
if (alpha / (b + w) < minlog)
{
goto S40;
}
if (r + alpha * log(alpha / (b + w)) < t)
{
goto S40;
}
S70:
/*
Step 5
*/
if (!(*aa == a))
{
goto S80;
}
genbet = w / (b + w);
goto S90;
S80:
genbet = b / (b + w);
S90:
goto S230;
S100:
/*
Algorithm BC
Initialize
*/
if (qsame)
{
goto S110;
}
a = Max(*aa, *bb);
b = Min(*aa, *bb);
alpha = a + b;
beta = 1.0 / b;
delta = 1.0 + a - b;
k1 = delta * (1.3888900168240070343E-2 + 4.1666701436042785645E-2 * b) / (a * beta - 0.77777802944183349609);
k2 = 0.25 + (0.5 + 0.25 / delta) * b;
S110:
S120:
u1 = C2F(ranf)();
/*
Step 1
*/
u2 = C2F(ranf)();
if (u1 >= 0.5)
{
goto S130;
}
/*
Step 2
*/
y = u1 * u2;
z = u1 * y;
if (0.25 * u2 + z - y >= k1)
{
goto S120;
}
goto S170;
S130:
/*
Step 3
*/
z = pow(u1, 2.0) * u2;
if (!(z <= 0.25))
{
goto S160;
}
v = beta * log(u1 / (1.0 - u1));
// JJV instead of checking v > expmax at top, I will check
// JJV if a < 1, then check the appropriate values
if (a > 1.0)
{
goto S135;
}
// JJV A < 1 so it can help out if EXP(V) would overflow
if (v > expmax)
{
goto S132;
}
w = a * exp(v);
goto S200;
S132:
w = v + log(a);
if (w > expmax)
{
goto S140;
}
w = exp(w);
goto S200;
// JJV in this case A > 1
S135:
if (v > expmax)
{
goto S140;
}
w = exp(v);
if (w > infnty / a)
{
goto S140;
}
w *= a;
goto S200;
S140:
w = infnty;
goto S200;
//S150:
// goto S200;
S160:
if (z >= k2)
{
goto S120;
}
S170:
/*
Step 4
Step 5
*/
v = beta * log(u1 / (1.0 - u1));
// JJV same kind of checking as above
if (a > 1.0)
{
goto S175;
}
// JJV A < 1 so it can help out if EXP(V) would overflow
if (v > expmax)
{
goto S172;
}
w = a * exp(v);
goto S190;
S172:
w = v + log(a);
if (w > expmax)
{
goto S180;
}
w = exp(w);
goto S190;
// JJV in this case A > 1
S175:
if (v > expmax)
{
goto S180;
}
w = exp(v);
if (w > infnty / a)
{
goto S180;
}
w *= a;
goto S190;
S180:
w = infnty;
// JJV here we also check to see if log overlows; if so, we treat it
// JJV as -INF, which means condition is true, i.e. restart
S190:
if (alpha / (b + w) < minlog)
{
goto S120;
}
if (alpha * (log(alpha / (b + w)) + v) - 1.3862943649291992188 < log(z))
{
goto S120;
}
S200:
/*
Step 6
*/
if (!(a == *aa))
{
goto S210;
}
genbet = w / (b + w);
goto S220;
S210:
genbet = b / (b + w);
S220:
S230:
return genbet;
#undef expmax
#undef infnty
#undef minlog
}
|