1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
// =============================================================================
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - 2009 - INRIA - Michael Baudin
// Copyright (C) 2011 - DIGITEO - Michael Baudin
// Copyright (C) 2012 - INRIA - Serge Steer
//
// This file is distributed under the same license as the Scilab package.
// =============================================================================
// <-- CLI SHELL MODE -->
function sortedRoots=sortRoots(rootsToSort)
//Sort roots using rounded values to avoid rounding errors
//Here 10000 is ok due to roots values
[tmp,kRoots]=gsort(round(10000*[real(rootsToSort) imag(rootsToSort)]),"lr","i");
sortedRoots = rootsToSort(kRoots);
endfunction
function checkroots(p,expectedroots,varargin)
// Checks the roots function against given roots.
//
// 1. Check default algorithm
myroots=roots(p);
computedroots = sortRoots(myroots);
expectedroots = sortRoots(expectedroots);
assert_checkalmostequal(computedroots,expectedroots,varargin(:));
//
// 2. Check "e" algorithm
myroots=roots(p,"e");
computedroots = sortRoots(myroots);
expectedroots = sortRoots(expectedroots);
assert_checkalmostequal(computedroots,expectedroots,varargin(:));
//
// 3. Check "f" algorithm
if ( isreal(p) ) then
myroots=roots(p,"f");
computedroots = sortRoots(myroots);
expectedroots = sortRoots(expectedroots);
assert_checkalmostequal(computedroots,expectedroots,varargin(:));
end
endfunction
// Check the computation of the roots of a polynomial
// with different kinds of polynomials and different
// kinds of roots :
// - real poly,
// - complex poly,
// - real roots,
// - complex roots.
//roots : 3 real roots
p=-6+11*%s-6*%s^2+%s^3;
expectedroots = [1; 2; 3];
checkroots(p,expectedroots,100*%eps);
//roots : 3 real roots + polynomials algebra
p=-6+11*%s-6*%s^2+%s^3;
q = p+0;
expectedroots = [1; 2; 3];
checkroots(q,expectedroots,100*%eps);
//roots : 3 complex roots
p=-6-%i*6+(11+%i*5)*%s+(-6-%i)*%s^2+%s^3;
expectedroots = [1+%i; 2 ; 3];
checkroots(p,expectedroots,1d-12,20*%eps);
//roots : 3 complex roots + polynomials algebra
p=-6-%i*6+(11+%i*5)*%s+(-6-%i)*%s^2+%s^3;
q = p+0;
expectedroots = [1+%i; 2 ; 3];
checkroots(p,expectedroots,1d-12,20*%eps);
// roots : no root at all
p=1;
v=[];
checkroots(p,[]);
q = p+0;
checkroots(q,[]);
//roots : 2 complex roots
p=1+%s+%s^2;
expectedroots = [-0.5 - sqrt(3.)/2.*%i; -0.5 + sqrt(3.)/2.*%i ];
checkroots(p,expectedroots,10*%eps);
//roots : 2 roots equals 0
p=%s^2;
expectedroots = [0. ; 0. ];
checkroots(p,expectedroots,%eps);
// 2 real roots with a zero derivate at the root
p=(%s-%pi)^2;
expectedroots = [%pi;%pi];
checkroots(p,expectedroots,10*%eps);
//
// Caution !
// The following are difficult root-finding problems
// with expected precision problems.
// See "Principles for testing polynomial
// zerofinding programs"
// Jenkins, Traub
// 1975
// p.28
// "The accuracy which one may expect to achieve in calculating
// zeros is limited by the condition of these zeros. In particular,
// for multiple zeros perturbations of size epsilon in the
// coefficients cause perturbations of size epsilon^(1/m)
// in the zeros."
//
//
// 3 real roots with a zero derivate at the root
// Really difficult problem : only simple precision computed, instead of double precision ***
p=(%s-%pi)^3;
expectedroots = [%pi;%pi;%pi];
checkroots(p,expectedroots,%eps^(1/3),5*%eps^(1/3));
// 4 real roots with a zero derivate at the root
// Really difficult problem : only simple precision
p=(%s-%pi)^4;
expectedroots = [%pi;%pi;%pi;%pi];
checkroots(p,expectedroots,%eps^(1/4),5*%eps^(1/4))
// 10 real roots with a zero derivate at the root
// Really difficult problem : only one correct digit
p=(%s-%pi)^10;
expectedroots = [%pi;%pi;%pi;%pi;%pi;%pi;%pi;%pi;%pi;%pi];
checkroots(p,expectedroots,%eps^(1/10),8*%eps^(1/10))
// "Numerical computing with Matlab", Cleve Moler.
A = diag(1:20);
p = poly(A,'x');
e = [1:20]';
checkroots(p,e,%eps,0.2);
// Tests from CPOLY
// M. A. Jenkins and J. F. Traub. 1972.
// Algorithm 419: zeros of a complex polynomial.
// Commun. ACM 15, 2 (February 1972), 97-99.
//
// EXAMPLE 1. POLYNOMIAL WITH ZEROS 1,2,...,10.
P=[];
PI=[];
P(1)=1;
P(2)=-55;
P(3)=1320;
P(4)=-18150;
P(5)=157773;
P(6)=-902055;
P(7) = 3416930;
P(8)=-8409500;
P(9)=12753576;
P(10)=-10628640;
P(11)=3628800;
PI(1:11) = 0;
P = complex(P,PI);
E = (1:10)';
R = roots(P);
E = sortRoots(E);
R = sortRoots(R);
assert_checkalmostequal(R, E, 1.e-10);
// EXAMPLE 2. ZEROS ON IMAGINARY AXIS DEGREE 3.
// x^3-10001.0001*i*x^2-10001.0001*x+i
P = [];
PI=[];
P(1)=1;
P(2)=0;
P(3)=-10001.0001;
P(4)=0;
PI(1)=0;
PI(2)=-10001.0001;
PI(3)=0;
PI(4)=1;
P = complex(P,PI);
E = [
0.0001*%i
%i
10000*%i
];
R = roots(P);
E = sortRoots(E);
R = sortRoots(R);
assert_checkalmostequal(R, E, 1.e-15, 1.e-10);
// plot(real(R),imag(R),"bo")
// xtitle("Roots","Real","Imaginary")
// EXAMPLE 3. ZEROS AT 1+I,1/2*(1+I)....1/(2**-9)*(1+I)
P = [];
PI=[];
P(1)=1.0;
P(2)=-1.998046875;
P(3)=0.0;
P(4)=.7567065954208374D0;
P(5)=-.2002119533717632D0;
P(6)=1.271507365163416D-2;
P(7)=0;
P(8)=-1.154642632172909D-5;
P(9)=1.584803612786345D-7;
P(10)=-4.652065399568528D-10;
P(11)=0;
PI(1)=0;
PI(2)=P(2);
PI(3)=2.658859252929688D0;
PI(4)=-7.567065954208374D-1;
PI(5)=0;
PI(6)=P(6);
PI(7)=-7.820779428584501D-4;
PI(8)=-P(8);
PI(9)=0;
PI(10)=P(10);
PI(11)=9.094947017729282D-13;
P = complex(P,PI);
R = roots(P);
E = (1+%i)*2.^((0:-1:-9)');
E = sortRoots(E);
R = sortRoots(R);
assert_checkalmostequal(R, E, 1.e-13, 1.e-14);
// EXAMPLE 4. MULTIPLE ZEROS
// Real part:
// 288 - 1344*x + 2204*x^2 - 920*x^3 - 1587*x^4 + 2374*x^5 - 1293*x^6 + 284*x^7 + 3*x^8 - 10*x^9 + x^10
// Imaginary part:
// 504*x - 2352*x^2 + 4334*x^3 - 3836*x^4 + 1394*x^5 + 200*x^6 - 334*x^7 + 100*x^8 - 10*x^9
P = [];
PI=[];
P(1)=1;
P(2)=-10;
P(3)=3;
P(4)=284;
P(5)=-1293;
P(6)=2374;
P(7)=-1587;
P(8)=-920;
P(9)=2204;
P(10)=-1344;
P(11)=288;
PI(1)=0;
PI(2)=-10;
PI(3)=100;
PI(4)=-334;
PI(5)=200;
PI(6)=1394;
PI(7) =-3836;
PI(8)=4334;
PI(9)=-2352;
PI(10)=504;
PI(11)=0;
P = complex(P,PI);
R = roots(P);
E = [
1
1
1
1
2*%i
2*%i
2*%i
3
3
4*%i
];
E = sortRoots(E);
R = sortRoots(R);
assert_checkalmostequal(R, E, 1.e-3, 1.e-3);
// EXAMPLE 5. 12 ZEROS EVENLY DISTRIBUTE ON A CIRCLE OF
// RADIUS 1. CENTERED AT 0+2I
// Real part:
// 4095 - 67584*x^2 + 126720*x^4 - 59136*x^6 + 7920*x^8 - 264*x^10 + x^12
// Imaginary part:
// 24576*x - 112640x^3 + 101376x^5 - 25344x^7 + 1760x^9 - 24x^11
P = [];
PI=[];
P(1)=1;
P(2)=0;
P(3)=-264;
P(4)=0;
P(5)=7920;
P(6)=0;
P(7)=-59136;
P(8)=0;
P(9)=126720;
P(10)=0;
P(11)=-67584;
P(12)=0;
P(13)=4095;
PI(1)=0;
PI(2)=-24;
PI(3)=0;
PI(4)=1760;
PI(5)=0;
PI(6)=-25344;
PI(7)=0;
PI(8)=101376;
PI(9)=0;
PI(10)=-112640;
PI(11)=0;
PI(12)=24576;
PI(13)=0;
P = complex(P,PI);
R = roots(P);
S3=sqrt(3);
E = [
-1 + 2*%i
%i
3*%i
1+2*%i
(1/2)*(-S3+3*%i)
(1/2)*(-S3+5*%i)
-(1/2)*%i*(S3+(-4-%i))
(1/2)*((1+4*%i)-%i*S3)
(1/2)*%i*(S3+(4+%i))
(1/2)*((1+4*%i)+%i*S3)
(1/2)*(S3+3*%i)
(1/2)*(S3+5*%i)
];
E = sortRoots(E);
R = sortRoots(R);
assert_checkalmostequal(R, E, 1.e-10, 1.e-8);
assert_checkequal(roots([4 3 2 1]), roots(poly([1 2 3 4], 'x', 'coeff')));
assert_checkequal(roots([4 3 2 1] + [1 2 3 4]*%i), roots(poly([1 2 3 4]+[4 3 2 1]*%i,'x','coeff')));
|