1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
c Copyright (C) ????-2008 - INRIA - Serge STEER
c
c This file must be used under the terms of the CeCILL.
c This source file is licensed as described in the file COPYING, which
c you should have received as part of this distribution. The terms
c are also available at
c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
C/MEMBR ADD NAME=WMPTRA,SSI=0
subroutine wmptra(pm1r,pm1i,d1,ld1,pm2r,pm2i,d2,m,n)
c!but
c cette subroutine transpose une matrice dont les coefficients
c sont des polynomes a coefficients complexes
c pm2=transpose(pm1)
c!liste d'appel
c
c subroutine wmptra(pm1r,pm1i,d1,ld1,pm2r,pm2i,d2,m,n)
c double precision pm1r(*),pm1i(*),pm2r(*),pm2i(*)
c integer d1(*),d2(n,m),m,n
c
c pm1 : tableau contenant les coefficients des polynomes,
c le coefficient de degre k du polynome pm1(i,j) est range
c dans pm1( d1(i + (j-1)*ld1 + k) )
c pm1 doit etre de taille au moins d1(ld1*n+1)-d1(1)
c d1 : tableau entier de taille ld1*n+1, si k=i+(j-1)*ld1 alors
c d1(k)) contient l'adresse dans pm1 du coeff de degre 0
c du polynome pm1(i,j). Le degre du polynome pm1(i,j) vaut:
c d1(k+1)-d1(k) -1
c ld1 : entier definissant le rangement dans d1
c
c pm2,d2 : definitions similaires a celles de pm1,d1, ld2
c est suppose egal a n
c m : nombre de ligne de la matrice pm1
c n : nombre de colonne de matrice pm1
c!
double precision pm1r(*),pm1i(*),pm2r(*),pm2i(*)
integer d1(*),d2(*),m,n
d2(1)=1
i2=1
do 20 i=1,m
i1=i
do 10 j=1,n
l1=d1(i1)
n1=d1(i1+1)-l1
l2=d2(i2)
call dcopy(n1,pm1r(l1),1,pm2r(l2),1)
call dcopy(n1,pm1i(l1),1,pm2i(l2),1)
i1=i1+ld1
i2=i2+1
d2(i2)=l2+n1
10 continue
20 continue
c call dscal(d2(1+m*n)-1,-1.0d+0,pm2i,1)
c
return
end
|