1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
c Copyright (C) ????-2008 - INRIA - Serge STEER
c
c This file must be used under the terms of the CeCILL.
c This source file is licensed as described in the file COPYING, which
c you should have received as part of this distribution. The terms
c are also available at
c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
C/MEMBR ADD NAME=WMPCNC,SSI=0
c Copyright INRIA
subroutine wmpcnc(mp1r,mp1i,d1,ld1,mp2r,mp2i,d2,ld2,mp3r,mp3i,d3,
& l,m,n,job)
c!but
c cette subroutine concatene deux matrices dont les coefficients
c sont des polynomes a coefficients complexes
c mp3=<mp1 mp2>
c ou
c mp3=<mp1' mp2'>'
c!liste d'appel
c
c subroutine wmpcnc(mp1r,mp1i,d1,ld1,mp2r,mp2i,d2,ld2,mp3r,mp3i,d3,
c & l,m,n,job)
c double precision mp1r(*),mp1i(*),mp2r(*),mp2i(*),mp3r(*),mp3i(*)
c integer d1(ld1*n+1),d2(ld2*n+1),d3(m*n+1),l,m,n,ld1,ld2,job
c
c mp1 : tableau contenant les coefficients des polynomes,
c le coefficient de degre k du polynome mp1(i,j) est range
c dans mp1( d1(i + (j-1)*ld1 + k) )
c mp1 doit etre de taille au moins d1(ld1*n+1)-d1(1)
c d1 : tableau entier de taille ld1*n+1, si k=i+(j-1)*ld1 alors
c d1(k)) contient l'adresse dans mp1 du coeff de degre 0
c du polynome mp1(i,j). Le degre du polynome mp1(i,j) vaut:
c d1(k+1)-d1(k) -1
c ld1 : entier definissant le rangement dans d1
c
c mp2,d2,ld2 : definitions similaires a celles de mp1,d1,ld1
c mp3,d3 : definitions similaires a celles de mp1 et d1, l3 est
c suppose egal a m
c l : nombre de ligne de mp1 (et de mp2 et mp3 si job>0)
c m : nombre de colonnes de mp1 (job>0)
c nombre de ligne de mp2 (job<0)
c n : nombre de colonnes de mp2 (job>0)
c et nombre de colonnes de mp1 et mp3 si job <0
c job : indique l'operation a effectuer:
c job >0 mp3=<mp1 mp2>
c job <0 mp3=<mp1' mp2'>'
c si abs(job)=1 mp1 et mp2 sont complexes
c si abs(job)=2 mp1 est reelle (mp1i vide) et mp2 complexe
c si abs(job)=3 mp1 est complexe,mp2 reelle (mp2i vide)
c!
double precision mp1r(*),mp1i(*),mp2r(*),mp2i(*),mp3r(*),mp3i(*)
integer d1(*),d2(*),d3(*),l,m,n,ld1,ld2
c
integer i1,i2,i3,np,i,j
c
i3=1
d3(1)=1
i1=1-ld1
i2=1-ld2
c
if(job.lt.0) goto 30
c
do 11 j=1,m
i1=i1+ld1
np=d1(i1+l)-d1(i1)
call dcopy(np,mp1r(d1(i1)),1,mp3r(d3(i3)),1)
if(job.ne.2) call dcopy(np,mp1i(d1(i1)),1,mp3i(d3(i3)),1)
if(job.eq.2) call dset(np,0.0d+0,mp3i(d3(i3)),1)
do 10 i=1,l
i3=i3+1
d3(i3)=d3(i3-1)+d1(i1+i)-d1(i1+i-1)
10 continue
11 continue
do 21 j=1,n
i2=i2+ld2
np=d2(i2+l)-d2(i2)
call dcopy(np,mp2r(d2(i2)),1,mp3r(d3(i3)),1)
if(job.ne.3) call dcopy(np,mp2i(d2(i2)),1,mp3i(d3(i3)),1)
if(job.eq.3) call dset(np,0.0d+0,mp3i(d3(i3)),1)
do 20 i=1,l
i3=i3+1
d3(i3)=d3(i3-1)+d2(i2+i)-d2(i2+i-1)
20 continue
21 continue
return
c
30 do 50 j=1,n
i1=i1+ld1
i2=i2+ld2
np=d1(i1+l)-d1(i1)
call dcopy(np,mp1r(d1(i1)),1,mp3r(d3(i3)),1)
if(job.ne.-2) call dcopy(np,mp1i(d1(i1)),1,mp3i(d3(i3)),1)
if(job.eq.-2) call dset(np,0.0d+0,mp3i(d3(i3)),1)
do 40 i=1,l
i3=i3+1
d3(i3)=d3(i3-1)+d1(i1+i)-d1(i1+i-1)
40 continue
np=d2(i2+m)-d2(i2)
call dcopy(np,mp2r(d2(i2)),1,mp3r(d3(i3)),1)
if(job.ne.-3) call dcopy(np,mp2i(d2(i2)),1,mp3i(d3(i3)),1)
if(job.eq.-3) call dset(np,0.0d+0,mp3i(d3(i3)),1)
do 45 i=1,m
i3=i3+1
d3(i3)=d3(i3-1)+d2(i2+i)-d2(i2+i-1)
45 continue
50 continue
return
end
|