summaryrefslogtreecommitdiff
path: root/modules/polynomials/src/fortran/wmpad.f
blob: 203660c07aa9742d65dd2f76b92784a8bb7e6576 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
c Copyright (C) ????-2008 - INRIA - Serge STEER
c
c This file must be used under the terms of the CeCILL.
c This source file is licensed as described in the file COPYING, which
c you should have received as part of this distribution.  The terms
c are also available at
c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
C/MEMBR ADD NAME=WMPAD,SSI=0
c     Copyright INRIA
      subroutine wmpad(pm1r,pm1i,d1,l1,pm2r,pm2i,d2,l2,pm3r,pm3i,d3,
     & m,n)
c!but
c     cette subroutine ajoute deux matrices dont les coefficients
c     sont des polynomes a coefficients complexes : pm3=pm1+pm2
c!liste d'appel
c
c    subroutine wmpad(pm1r,pm1i,d1,l1,pm2r,pm2i,d2,l2,pm3r,pm3i,d3,
c    & m,n)
c    double precision pm1r(*),pm1i(*),pm2r(*),pm2i(*),pm3r(*),pm3i(*)
c    integer d1(l1*n+1),d2(l2*n+1),d3(m*n+1),m,n,l1,l2
c
c     pm1 : tableau reel contenant les coefficients des polynomes,
c           le coefficient de degre k du polynome pm1(i,j) est range
c           dans pm1( d1(i + (j-1)*l1 + k) )
c           pm1 doit etre de taille au moins d1(l1*n+1)-d1(1)
c     d1 : tableau entier de taille l1*n+1,  si k=i+(j-1)*l1 alors
c          d1(k)) contient  l'adresse dans pm1 du coeff de degre 0
c          du polynome pm1(i,j). Le degre du polynome pm1(i,j) vaut:
c          d1(k+1)-d1(k) -1
c     l1 : entier definissant le rangement dans d1
c
c     pm2,d2,l2 : definitions similaires a celles de pm1,d1,l1
c     pm3,d3 : definitions similaires a celles de pm1 et d1, l3 est
c              suppose egal a m
c     m : nombre de ligne des matrices pm
c     n : nombre de colonnes des matrices pm
c!
      double precision pm1r(*),pm1i(*),pm2r(*),pm2i(*),pm3r(*),pm3i(*)
      integer d1(*),d2(*),d3(*),m,n,l1,l2
c
      integer n1,n2,n3,mn,i,k
c
      mn=m*n
c
      d3(1)=1
      i1=-l1
      i2=-l2
      k3=0
c boucle sur les polynomes
      do 20 j=1,n
      i1=i1+l1
      i2=i2+l2
      do 20 i=1,m
      k1=d1(i1+i)-1
      k2=d2(i2+i)-1
      n1=d1(i1+i+1)-d1(i1+i)
      n2=d2(i2+i+1)-d2(i2+i)
      if(n1.gt.n2) goto 15
c
c n1.le.n2
c
      do 12 k=1,n1
      pm3r(k3+k)=pm1r(k1+k)+pm2r(k2+k)
      pm3i(k3+k)=pm1i(k1+k)+pm2i(k2+k)
   12 continue
      if(n1.eq.n2) goto 14
      n3=n1+1
      do 13 k=n3,n2
      pm3r(k3+k)=+pm2r(k2+k)
   13 pm3i(k3+k)=pm2i(k2+k)
   14 n3=n2
      d3(i+1+(j-1)*m)=d3(i+(j-1)*m)+n3
      goto 18
c
c n1.gt.n2
c
   15 do 16 k=1,n2
      pm3r(k3+k)=pm1r(k1+k)+pm2r(k2+k)
   16 pm3i(k3+k)=pm1i(k1+k)+pm2i(k2+k)
      n3=n2+1
      do 17 k=n3,n1
      pm3r(k3+k)=pm1r(k1+k)
   17 pm3i(k3+k)=pm1i(k1+k)
      n3=n1
      d3(i+1+(j-1)*m)=d3(i+(j-1)*m)+n3
c
   18 k1=k1+n1
      k2=k2+n2
      k3=k3+n3
   20 continue
      return
      end