1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
c
c From NETLIB : TOMS/493
c Based on Jenkins-Traub algorithm :
c http://en.wikipedia.org/wiki/Jenkins-Traub_method
c
subroutine rpoly(op, degree, zeror, zeroi, fail)
c!purpose
c finds the zeros of a real polynomial
c!calling sequence
c op - double precision vector of coefficients in
c order of decreasing powers.
c degree - integer degree of polynomial.
c zeror, zeroi - output double precision vectors of
c real and imaginary parts of the
c zeros.
c fail - output parameter,
c 2 if leading coefficient is zero
c 1 for non convergence or if rpoly
c has found fewer than degree zeros.
c in the latter case degree is reset to
c the number of zeros found.
c 3 if degree>100
c!comments
c to change the size of polynomials which can be
c solved, reset the dimensions of the arrays in the
c common area and in the following declarations.
c the subroutine uses single precision calculations
c for scaling, bounds and error calculations. all
c calculations for the iterations are done in double
c precision.
c!
external dlamch,slamch
double precision dlamch
real slamch
c
common /gloglo/ p, qp, k, qk, svk, sr, si, u,
* v, a, b, c, d, a1, a2, a3, a6, a7, e, f, g,
* h, szr, szi, lzr, lzi, eta, are, mre, n, nn
double precision p(101), qp(101), k(101),
* qk(101), svk(101), sr, si, u, v, a, b, c, d,
* a1, a2, a3, a6, a7, e, f, g, h, szr, szi,
* lzr, lzi
double precision op(*), temp(101),
* zeror(*), zeroi(*), t, aa, bb, cc,factor
real ptt(101), lo, maxi, mini, xx, yy, cosr,
* sinr, xxx, x, sc, bnd, xm, ff, df, dx, infin,
* smalno, base,eta,are,mre
integer degree, cnt, nz, i, j, jj, nm1, n, nn
logical zerok
integer fail
c
real ZERO
parameter (ZERO = 0.0E+0)
if(degree.gt.100) goto 300
c the following statements set machine constants used
c in various parts of the program. the meaning of the
c four constants are...
c eta the maximum relative representation error
c which can be described as the smallest
c positive floating point number such that
c 1.do+eta is greater than 1.
c infiny the largest floating-point number.
c smalno the smallest positive floating-point number
c if the exponent range differs in single and
c double precision then smalno and infin
c should indicate the smaller range.
c base the base of the floating-point number
c system used.
c
c Rely on compiler instead of Lapack
c slamch function does not work under macosX
c replace this by compiler stuffs working on each platform
c http://www.netlib.org/lapack/util/slamch.f
c
c slamch('u') <=> TINY(ZERO)
smalno=TINY(ZERO)
c slamch('o') <=> HUGE(ZERO)
infin=HUGE(ZERO)
c slamch('b') <=> RADIX(ZERO)
base=RADIX(ZERO)
eta=real(dlamch('p'))
c are and mre refer to the unit error in + and *
c respectively. they are assumed to be the same as
c eta.
are = eta
mre = eta
lo = smalno/eta
c initialization of constants for shift rotation
xx = 0.707106780d+0
yy = -xx
cosr = -0.0697564740d+0
sinr = 0.997564050d+0
fail = 0.
n = degree
nn = n + 1
c algorithm fails if the leading coefficient is zero.
if (op(1).ne.0.0d+0) go to 10
fail = 2
degree = 0
return
c make a copy of the coefficients
10 do 20 i=1,nn
p(i) = op(i)
20 continue
c remove the zeros at the origin if any
30 if (p(nn).ne.0.0d+0) go to 40
j = degree - n + 1
zeror(j) = 0.0d+0
zeroi(j) = 0.0d+0
nn = nn - 1
n = n - 1
go to 30
c start the algorithm for one zero
40 if (n.gt.2) go to 60
if (n.lt.1) return
c calculate the final zero or pair zeros
if (n.eq.2) go to 50
zeror(degree) = - p(2)/p(1)
zeroi(degree) = 0.0d+0
return
50 call quad(p(1), p(2), p(3), zeror(degree-1),
* zeroi(degree-1), zeror(degree), zeroi(degree))
return
c find largest and smallest moduli of coefficients.
60 maxi = 0.
mini = infin
do 70 i=1,nn
x = abs(real(p(i)))
if (x.gt.maxi) maxi = x
if (x.ne.0. .and. x.lt.mini) mini = x
70 continue
C maxi=min(infin,maxi) bug "f77 -mieee-with-inexact"
if (infin.lt.maxi) maxi=infin
c scale if there are large or very small coefficients
c computes a scale factor to multiply the
c coefficients of the polynomial. the scaling is done
c to avoid overflow and to avoid undetected underflow
c interfering with the convergence criterion.
c the factor is a power of the base
sc = lo/mini
if (sc.gt.1.0) go to 80
if (maxi.lt.10.) go to 110
if (sc.eq.0.) sc = smalno
go to 90
80 if (infin/sc.lt.maxi) go to 110
90 l = log(sc)/log(base) + .5
factor = (base*1.0d+0)**l
if (factor.eq.1.0d+0) go to 110
do 100 i=1,nn
p(i) = factor*p(i)
100 continue
c compute lower bound on moduli of zeros.
110 do 120 i=1,nn
c ptt(i) = min(infin,abs(real(p(i)))) bug "f77 -mieee-with-inexact"
ptt(i) = abs(real(p(i)))
if (infin.lt.abs(real(p(i)))) ptt(i)=infin
120 continue
ptt(nn) = -ptt(nn)
c compute upper estimate of bound
x = exp((log(-ptt(nn))-log(ptt(1)))/real(n))
if (ptt(n).eq.0.) go to 130
c if newton step at the origin is better, use it.
xm = -ptt(nn)/ptt(n)
if (xm.lt.x) x = xm
c chop the interval (0,x) until ff .le. 0
130 xm = x*.1
ff = ptt(1)
do 140 i=2,nn
ff = ff*xm + ptt(i)
140 continue
if (ff.le.0) go to 150
if(ff.gt.infin) goto 310
x = xm
go to 130
150 dx = x
c do newton iteration until x converges to two
c decimal places
160 if (abs(dx/x).le..005) go to 180
ff = ptt(1)
df = ff
do 170 i=2,n
ff = ff*x + ptt(i)
df = df*x + ff
170 continue
ff = ff*x + ptt(nn)
if(ff.gt.infin) goto 310
dx = ff/df
x = x - dx
go to 160
180 bnd = x
c compute the derivative as the intial k polynomial
c and do 5 steps with no shift
nm1 = n - 1
do 190 i=2,n
k(i) = real(nn-i)*p(i)/real(n)
190 continue
k(1) = p(1)
aa = p(nn)
bb = p(n)
zerok = k(n).eq.0.0d+0
do 230 jj=1,5
cc = k(n)
if (zerok) go to 210
c use scaled form of recurrence if value of k at 0 is
c nonzero
t = -aa/cc
do 200 i=1,nm1
j = nn - i
k(j) = t*k(j-1) + p(j)
200 continue
k(1) = p(1)
zerok = abs(k(n)).le.abs(bb)*eta*10.
go to 230
c use unscaled form form of recurrence
210 do 220 i=1,nm1
j = nn - i
k(j) = k(j-1)
220 continue
k(1) = 0.0d+0
zerok = k(n).eq.0.0d+0
230 continue
c save k for restarts with new shifts
do 240 i=1,n
temp(i) = k(i)
240 continue
c loop to select the quadratic corresponding to each
c new shift
do 280 cnt=1,20
c quadratic corresponds to a double shift to a
c non-real point and its complex conjugate. the point
c has modulus bnd and amplitude rotated by 94 degrees
c from the previous shift
xxx = cosr*xx - sinr*yy
yy = sinr*xx + cosr*yy
xx = xxx
sr = bnd*xx
si = bnd*yy
u = -2.0d+0*sr
v = bnd
c second stage calculation, fixed quadratic
call fxshfr(20*cnt, nz)
if (nz.eq.0) go to 260
c the second stage jumps directly to one of the third
c stage iterations and returns here if successful.
c deflate the polynomial, store the zero or zeros and
c return to the main algorithm.
j = degree - n + 1
zeror(j) = szr
zeroi(j) = szi
nn = nn - nz
n = nn - 1
do 250 i=1,nn
p(i) = qp(i)
250 continue
if (nz.eq.1) go to 40
zeror(j+1) = lzr
zeroi(j+1) = lzi
go to 40
c if the iteration is unsuccessful another quadratic
c is chosen after restoring k
260 do 270 i=1,n
k(i) = temp(i)
270 continue
280 continue
c return with failure if no convergence with 20
c shifts
fail = 1
degree = degree - n
return
300 fail=3
return
310 fail=1
return
end
|