1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
c Copyright (C) 1989-2008 - INRIA - Serge STEER
c
c This file must be used under the terms of the CeCILL.
c This source file is licensed as described in the file COPYING, which
c you should have received as part of this distribution. The terms
c are also available at
c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
subroutine recbez(A,n,B,m,best,ipb,w,err)
c!but
c calcule la factorisation de bezout de deux polynomes A,B c'est a dire
c les polynomes x,y,u, v et pgcd de degre minimal et tels que :
c [x u]
c [A B] * [ ] = [0 Pgcd]
c [y v]
c!liste d'appel
c subroutine recbez(A,n,B,m,best,ipb,w,err)
c double precision A(n+1),B(m+1),w(*),best(*),err
c
c A : vector of A polynomial coefficients, in increasing degrees order
c n : degree of A polynomial
c B : vector of B polynomial coefficients, in increasing degrees order
c m : degree of B polynomial
c
c best : Array where the result is stored
c (2*(n+m)+min(n,m)+3) [gcd u,v,x,y]
c gcd=best(1:ipb(2)-1),
c u=best(ipb(2):ipb(3)-1) v=best(ipb(3):ipb(4)-1)
c x=best(ipb(4):ipb(5)-1) y=best(ipb(5):ipb(6)-1)
c ipb : integer array that gives the way gcd u,v,x,y are stored in best
c w: working array w(7*n0+3*n0*n0) ou n0=max(n,m)+1
c err : estimated equation error
c! method
c If A and B are polynomials of degree m and n : A in R[x] , B in R[x]
c n m
c The application: (P,Q) in R[x] x R[x] --> P*A+Q*B in R[x]
c m-l n-l n+m-l
c
c is linear. It can be represented by a linear application from
c R^(n+m-2*l+2) to R^(n+m-l+1) X--> X*S. Let call S the matrix S
c of this linear application. If l=1 this is the Sylvester matrix.
c example for A of degree 5 (n=5) and B of degree 4 (m=4) and l=2.
c [A_0 A_1 A_2 A_3 A_4 A_5 0 0]
c [ 0 A_0 A_1 A_2 A_3 A_4 A_5 0]
c [ 0 0 A_0 A_1 A_2 A_3 A_4 A_5]
c S = [B_0 B_1 B_2 B_3 B_4 0 0 0]
c [ 0 B_0 B_1 B_2 B_3 B_4 0 0]
c [ 0 0 B_0 B_1 B_2 B_3 B_4 0]
c [ 0 0 0 B_0 B_1 B_2 B_3 B_4]
c
c X = [P_0 P_1 P_2 Q_0 Q_1 Q_2 Q_3]
c The greater l for which S becomes not full rank is the GCD degree.
c The kernel of S then gives the x and y value
c The GCD is the element of the image of S that has the smaller
c degree.
c The determination of the S rank is a difficult problem. To avoid
c the use of a tolerance The algorithm try all l from min(m,n)-1 to
c 1. and keeps the solution that minimise a criterion based on
c forward equation errors ||A*x+B*y|| and ||A*u+B*V-GCD|| and
c backward equation errors ||y*CGD+A|| and ||x*GCD-B||
c Finally instead of computing QR decomposition of each S matrices a
c recursive method is used that updates previous QR decomposition
c using givens rotations. This algorithm also requires to store only
c a matrix which has max(m,n)+1 columns.
c
c! called routines
c dest dcopy bezstp dlamch
double precision A(n+1),B(m+1),w(*),best(*),err
double precision dlamch
integer ipb(6)
c
integer nn,mm
c
err=dlamch('o')
nn = n
mm = m
c
c compute the true degree for A and B taking care of 0 higer degree
c
nn=n+1
01 nn=nn-1
if(nn.lt.0) goto 30
if(A(nn+1).eq.0.0d+0) goto 01
c
mm=m+1
02 mm=mm-1
if(mm.lt.0) goto 30
if(B(mm+1).eq.0.0d+0) goto 02
c
n0=max(nn,mm)+1
n02=n0*(n0+1)
c leading dimension of the S matrix
ldS=n0+1
c leading dimension of the Q matrix of the QR factorization
ldQ=n0+1
c allocate working arrays
c start index of S array in w
iS=1
c start index of Q array in w
iQ=iS+n02
c start index of working array for bezstp
iw=iQ+2*n02
ifree=iw+7*n0
c initialize S (n0+1) x n0 matrix array. Take care that it is a
c compact form of the S matrix described in the method part.
call dset(n02,0.0d+0,w(iS),1)
c the last 2 rows form the current S matrix
c lS points to the beginning of last row
c and lS-1 to the beginning of the previous one
lS=iS-1+ldS
c initialize with x and y of degree 0
c [0 ]
c S= [coeff(A)]
c [coeff(B)]
c no
call dcopy(nn+1,A,1,w(lS-1),ldS)
call dcopy(mm+1,B,1,w(lS),ldS)
c initialize U (n0+1) x (2*n0) array
c [0...0|0...0 0 0]
c U= [0...0|0...0 1 0]
c [0...0|0...0 0 1]
C n0 n0
call dset(2*n02,0.0d+0,w(iQ),1)
lQ=iQ-1+ldQ+2*n0*ldQ
c the last 2 rows form the current Q matrix
call dset(2,1.0d+0,w(lQ-1-2*ldQ),ldQ+1)
c loop on GCD degree degree(gcd)=n0+1-l
do 20 l=1,n0
lS=lS-1
lQ=lQ-1-2*ldQ
lx=lS-1+ldS
lv=lQ-1-2*ldQ
c . lS : points on the upper left corner of the current A matrix,
c . lQ : points on the upper left corner of the current Q matrix
call bezstp(A,nn,B,mm,w(lS),ldS,w(lQ),ldQ,l,w(lx),
$ w(lv),w(iw),best,ipb,err)
20 continue
return
30 continue
c Handle special cases at least one polynomial is a scalar
err=0.0d+0
ipb(1)=1
if(min(nn,mm).eq.0) goto 70
CRES=nn-mm
if (CRES .lt. 0) then
goto 40
elseif (CRES .eq. 0) then
goto 50
else
goto 60
endif
40 continue
c A=0
np=mm
call dcopy(mm+1,B,1,best(1),1)
ipb(2)=ipb(1)+mm+1
best(ipb(2))=0.0d+0
ipb(3)=ipb(2)+1
best(ipb(3))=1.0d+0
ipb(4)=ipb(3)+1
best(ipb(4))=1.0d+0
ipb(5)=ipb(4)+1
best(ipb(5))=0.0d+0
ipb(6)=ipb(5)+1
return
50 continue
c A=0,B=0 la decomposition n'est pas definie
np=0
best(1)=0.0d+0
ipb(2)=ipb(1)+1
best(ipb(2))=1.0d+0
ipb(3)=ipb(2)+1
best(ipb(3))=0.0d+0
ipb(4)=ipb(3)+1
best(ipb(4))=0.0d+0
ipb(5)=ipb(4)+1
best(ipb(5))=1.0d+0
ipb(6)=ipb(5)+1
return
60 continue
c B=0
np=nn
call dcopy(nn+1,A,1,best(1),1)
ipb(2)=ipb(1)+nn+1
best(ipb(2))=1.0d+0
ipb(3)=ipb(2)+1
best(ipb(3))=0.0d+0
ipb(4)=ipb(3)+1
best(ipb(4))=0.0d+0
ipb(5)=ipb(4)+1
best(ipb(5))=1.0d+0
ipb(6)=ipb(5)+1
return
c
70 best(1)=1.0d+0
ipb(2)=2
CRES=nn-mm
if (CRES .lt. 0) then
goto 90
elseif (CRES .eq. 0) then
goto 95
else
goto 100
endif
90 continue
c A=cte
best(ipb(2))=1.0d+0/A(1)
ipb(3)=ipb(2)+1
best(ipb(3))=0.0d+0
ipb(4)=ipb(3)+1
call dcopy(mm+1,B,1,best(ipb(4)),1)
ipb(5)=ipb(4)+mm+1
best(ipb(5))=-A(1)
ipb(6)=ipb(5)+1
return
95 continue
c A=cte,B=cte
if(abs(A(1)).gt.abs(B(1))) goto 90
c
100 continue
c B=cte
best(ipb(2))=0.0d+0
ipb(3)=ipb(2)+1
best(ipb(3))=1.0d+0/B(1)
ipb(4)=ipb(3)+1
best(ipb(4))=-B(1)
ipb(5)=ipb(4)+1
call dcopy(nn+1,A,1,best(ipb(5)),1)
ipb(6)=ipb(5)+nn+1
return
c
end
|