summaryrefslogtreecommitdiff
path: root/modules/polynomials/help/en_US/rational.xml
blob: fa20b3f497f808157624c031fca582d377b26aa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<?xml version="1.0" encoding="UTF-8"?>
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="rational">
    <refnamediv>
        <refname>rational</refname>
        <refpurpose>Scilab objects, rational in Scilab</refpurpose>
    </refnamediv>
    <refsection>
        <title>Description</title>
        <para>
            A rational <literal>r</literal> is a quotient of two polynomials <literal>r=num/den</literal>.
            The internal representation of a rational is a list.
            <literal>r=tlist(['r','num','den','dt'],num,den,[])</literal> is the same as <literal>r=num/den</literal>.
            A rational matrix can be defined with the usual syntax
            e.g. <literal>[r11,r12;r21,r22]</literal> is a 2x2 matrix where <literal>rij</literal> are 
            1x1 rationals.
            A rational matrix can also be defined as above as a list
            <literal>rlist(num,den,[])</literal> with <literal>num</literal> and <literal>den</literal> polynomial matrices.
        </para>
    </refsection>
    <refsection>
        <title>Examples</title>
        <programlisting role="example"><![CDATA[ 
s=poly(0,'s');
W=[1/s,1/(s+1)]
W'*W
Num=[s,s+2;1,s];Den=[s*s,s;s,s*s];
rlist(Num,Den,[])
H=Num./Den
syslin('c',Num,Den)
syslin('c',H)
[Num1,Den1]=simp(Num,Den)
 ]]></programlisting>
    </refsection>
    <refsection role="see also">
        <title>See Also</title>
        <simplelist type="inline">
            <member>
                <link linkend="poly">poly</link>
            </member>
            <member>
                <link linkend="syslin">syslin</link>
            </member>
            <member>
                <link linkend="simp">simp</link>
            </member>
        </simplelist>
    </refsection>
</refentry>