summaryrefslogtreecommitdiff
path: root/modules/overloading/macros/%r_p.sci
blob: ac11d142d4f3587dc1b244004f268eff8acf4ac0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
// Copyright (C) DIGITEO - 2012 - Allan CORNET
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt

function %r_p(h)

    if exists("with_texmacs")==1 & typeof(with_texmacs)=="function" then
        texout(h);
    else
        //used to display rational fraction with complex coefficients
        //The real case is hard coded
        if size(size(h),"*")>2 then
            //hypermatrix case
            %hmr_p(h)
            return
        end

        [m, n]=size(h);
        if (m == 0) | (n == 0) then
            return
        end
        del="!"
        blank=" "
        if m*n==1 then del=" ",end
        height=zeros(m,1)  // to store "height" of each row do be displayed
        width=zeros(1,n) // to store "width" of each column do be displayed
        T=list() // to store display of each entry of the rational
        for k=1:n
            for l=1:m
                tlk=r2str(h(l,k))
                height(l)=max(size(tlk,1),height(l))
                width(k)=max(max(length(tlk)),width(k))
                T($+1)=tlk
            end
        end
        ll=lines()
        k0=0

        //manage column display
        while %t
            // find how many columns can be displayed simultaneously
            last=find(cumsum(width+2)<ll(1)-3);last=last($);
            if last==[] then last=1,end
            // form display of these columns
            txt=[]
            for l=1:m
                txtr=emptystr(height(l),1)
                for k=1:last
                    txtr=txtr+part(blank(ones(height(l),1)),1:2)
                    tlk=T(l+(k0+k-1)*m)
                    txtr=txtr+[part(tlk,1:width(k));emptystr(height(l)-size(tlk,1),1)]
                end
                txt=[txt;txtr]
            end
            // add matrix delimiter and columns title and display
            nt=size(txt,1)
            txt=part(txt,1:max(length(txt)))
            if k0==0&last==n then
                write(%io(2),del(ones(nt,1))+txt+blank(ones(nt,1))+del(ones(nt,1)))
            else
                if last==1 then
                    leg="column "+string(k0+1)
                else
                    leg="column "+string(k0+1)+" to "+string(k0+last)
                end
                write(%io(2),[" ";
                leg;
                " ";
                del(ones(nt,1))+txt+blank(ones(nt,1))+del(ones(nt,1))])
            end
            width(1:last)=[]
            k0=last
            if width==[] then break,end
        end

    end

endfunction

function txt=p2str(p)
    //form display of a single polynomial with complex coefficients
    lparen="("
    rparen=")"
    blank=" "
    if type(p)==1 then p=poly(p,"s","c"),end
    d=degree(p)
    v=stripblanks(varn(p))

    c=strsubst(string(coeff(p)),"%i","i")
    // find coefficients with displays as "0" (deleted later)
    kz=find(c=="0")
    // find coefficients with displays as "1"
    k1=find(c=="1");if k1(1)==1 then k1(1)=[],end
    if k1<>[] then c(k1)=emptystr(1,size(k1,"*")),end
    // find coefficients with real AND imaginary part (to be parenthezied)
    kc=find(imag(coeff(p))<>0&real(coeff(p))<>0)
    w=ones(1,size(kc,"*"))
    if kc<>[] then c(kc)=lparen(w)+c(kc)+rparen(w),end
    // add formal variable name
    c=c+[emptystr(),v(ones(1:d))]

    // form exponents
    expo1=[" "," ",string(2:d)]

    //delete coeffiecients and exponents corresponding to "0"s
    c(kz)=[]
    expo1(kz)=[]
    if c==[] then
        c="0"
        expo1=emptystr()
    end

    // change coefficients sign display and adjust length of exponents
    le=0
    expo=emptystr(c)
    for kc=1:size(c,"*")
        if kc>1 then
            if part(c(kc),1)<>"-" then
                c(kc)=" + "+c(kc),
            else
                c(kc)=" - "+part(c(kc),2:length(c(kc)))
            end
        end
        expo(kc)=part(blank,ones(1,length(c(kc))-le))
        le=length(expo1(kc))
    end
    expo=expo+expo1(1:size(c,"*"))

    //Handle long lines
    ll=lines()
    nn=size(expo,"*")
    txt=[]
    count=0
    while %t
        L=cumsum(length(expo))
        last=find(L<ll(1)-3);last=last($)
        txt=[txt;
        part(blank,ones(1,count))+strcat(expo(1:last));
        strcat(c(1:last))]
        expo(1:last)=[]
        c(1:last)=[]
        if c==[] then break,end
        count=count+1
    end

endfunction
function txt=r2str(h)
    //form display of a single rational with complex coefficients
    dash="-"
    blank=" "

    t1=p2str(h("num")) //display of numerator
    t2=p2str(h("den")) //display of denominator

    //add fraction bar and center
    l1=max(length(t1))
    l2=max(length(t2))
    if l1>l2 then
        ll1=int((l1-l2)/2)
        ll2=l1-l2-ll1
        b=blank(ones(size(t2,"*"),1))
        txt=[t1;
        part(dash,ones(1,l1));
        part(b,ones(1,ll1))+t2+part(b,ones(1,ll2))]
    elseif l1<l2 then
        ll1=int((l2-l1)/2)
        ll2=l2-l1-ll1
        b=blank(ones(size(t1,"*"),1))
        txt=[part(b,ones(1,ll1))+t1+part(b,ones(1,ll2));
        part(dash,ones(1,l2));
        t2]
    else
        txt=[t1;part(dash,ones(1,l1));t2]
    end
endfunction

function   %hmr_p(h)
    // hypermatrix display
    dims=size(h)
    num=h.num
    den=h.den
    nd=size(dims,"*")
    I=(1:dims(3));
    for k=4:nd
        I=[ones(1,dims(k)).*.I;
        (1:dims(k)).*.ones(1,size(I,2))];
    end
    k=1;sz=dims(1)*dims(2)
    for II=I
        tit="(:,:,"+strcat(string(II'),",")+")"
        write(%io(2),tit)
        hb=rlist(matrix(num.entries(k:k-1+sz),dims(1),dims(2)),matrix(den.entries(k:k-1+sz),dims(1),dims(2)),h.dt)
        disp(hb)
        k=k+sz
    end
endfunction