1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
// Copyright (C) DIGITEO - 2012 - Allan CORNET
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function %r_p(h)
if exists("with_texmacs")==1 & typeof(with_texmacs)=="function" then
texout(h);
else
//used to display rational fraction with complex coefficients
//The real case is hard coded
if size(size(h),"*")>2 then
//hypermatrix case
%hmr_p(h)
return
end
[m, n]=size(h);
if (m == 0) | (n == 0) then
return
end
del="!"
blank=" "
if m*n==1 then del=" ",end
height=zeros(m,1) // to store "height" of each row do be displayed
width=zeros(1,n) // to store "width" of each column do be displayed
T=list() // to store display of each entry of the rational
for k=1:n
for l=1:m
tlk=r2str(h(l,k))
height(l)=max(size(tlk,1),height(l))
width(k)=max(max(length(tlk)),width(k))
T($+1)=tlk
end
end
ll=lines()
k0=0
//manage column display
while %t
// find how many columns can be displayed simultaneously
last=find(cumsum(width+2)<ll(1)-3);last=last($);
if last==[] then last=1,end
// form display of these columns
txt=[]
for l=1:m
txtr=emptystr(height(l),1)
for k=1:last
txtr=txtr+part(blank(ones(height(l),1)),1:2)
tlk=T(l+(k0+k-1)*m)
txtr=txtr+[part(tlk,1:width(k));emptystr(height(l)-size(tlk,1),1)]
end
txt=[txt;txtr]
end
// add matrix delimiter and columns title and display
nt=size(txt,1)
txt=part(txt,1:max(length(txt)))
if k0==0&last==n then
write(%io(2),del(ones(nt,1))+txt+blank(ones(nt,1))+del(ones(nt,1)))
else
if last==1 then
leg="column "+string(k0+1)
else
leg="column "+string(k0+1)+" to "+string(k0+last)
end
write(%io(2),[" ";
leg;
" ";
del(ones(nt,1))+txt+blank(ones(nt,1))+del(ones(nt,1))])
end
width(1:last)=[]
k0=last
if width==[] then break,end
end
end
endfunction
function txt=p2str(p)
//form display of a single polynomial with complex coefficients
lparen="("
rparen=")"
blank=" "
if type(p)==1 then p=poly(p,"s","c"),end
d=degree(p)
v=stripblanks(varn(p))
c=strsubst(string(coeff(p)),"%i","i")
// find coefficients with displays as "0" (deleted later)
kz=find(c=="0")
// find coefficients with displays as "1"
k1=find(c=="1");if k1(1)==1 then k1(1)=[],end
if k1<>[] then c(k1)=emptystr(1,size(k1,"*")),end
// find coefficients with real AND imaginary part (to be parenthezied)
kc=find(imag(coeff(p))<>0&real(coeff(p))<>0)
w=ones(1,size(kc,"*"))
if kc<>[] then c(kc)=lparen(w)+c(kc)+rparen(w),end
// add formal variable name
c=c+[emptystr(),v(ones(1:d))]
// form exponents
expo1=[" "," ",string(2:d)]
//delete coeffiecients and exponents corresponding to "0"s
c(kz)=[]
expo1(kz)=[]
if c==[] then
c="0"
expo1=emptystr()
end
// change coefficients sign display and adjust length of exponents
le=0
expo=emptystr(c)
for kc=1:size(c,"*")
if kc>1 then
if part(c(kc),1)<>"-" then
c(kc)=" + "+c(kc),
else
c(kc)=" - "+part(c(kc),2:length(c(kc)))
end
end
expo(kc)=part(blank,ones(1,length(c(kc))-le))
le=length(expo1(kc))
end
expo=expo+expo1(1:size(c,"*"))
//Handle long lines
ll=lines()
nn=size(expo,"*")
txt=[]
count=0
while %t
L=cumsum(length(expo))
last=find(L<ll(1)-3);last=last($)
txt=[txt;
part(blank,ones(1,count))+strcat(expo(1:last));
strcat(c(1:last))]
expo(1:last)=[]
c(1:last)=[]
if c==[] then break,end
count=count+1
end
endfunction
function txt=r2str(h)
//form display of a single rational with complex coefficients
dash="-"
blank=" "
t1=p2str(h("num")) //display of numerator
t2=p2str(h("den")) //display of denominator
//add fraction bar and center
l1=max(length(t1))
l2=max(length(t2))
if l1>l2 then
ll1=int((l1-l2)/2)
ll2=l1-l2-ll1
b=blank(ones(size(t2,"*"),1))
txt=[t1;
part(dash,ones(1,l1));
part(b,ones(1,ll1))+t2+part(b,ones(1,ll2))]
elseif l1<l2 then
ll1=int((l2-l1)/2)
ll2=l2-l1-ll1
b=blank(ones(size(t1,"*"),1))
txt=[part(b,ones(1,ll1))+t1+part(b,ones(1,ll2));
part(dash,ones(1,l2));
t2]
else
txt=[t1;part(dash,ones(1,l1));t2]
end
endfunction
function %hmr_p(h)
// hypermatrix display
dims=size(h)
num=h.num
den=h.den
nd=size(dims,"*")
I=(1:dims(3));
for k=4:nd
I=[ones(1,dims(k)).*.I;
(1:dims(k)).*.ones(1,size(I,2))];
end
k=1;sz=dims(1)*dims(2)
for II=I
tit="(:,:,"+strcat(string(II'),",")+")"
write(%io(2),tit)
hb=rlist(matrix(num.entries(k:k-1+sz),dims(1),dims(2)),matrix(den.entries(k:k-1+sz),dims(1),dims(2)),h.dt)
disp(hb)
k=k+sz
end
endfunction
|