summaryrefslogtreecommitdiff
path: root/modules/optimization/macros/numderivative.sci
blob: dc630f3fd3cfa1b0d2587b1e203a63824abe361b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) ? - 2008 - Rainer von Seggern
// Copyright (C) ? - 2008 - Bruno Pincon
// Copyright (C) 2009 - INRIA - Michael Baudin
// Copyright (C) 2010-2011 - DIGITEO - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt

function [J, H] = numderivative(varargin)
    //
    // Check input arguments
    [lhs, rhs] = argn();
    if (rhs < 2 | rhs > 6) then
        error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"), "numderivative", 2, 6));
    end
    if (lhs < 1 | lhs > 2) then
        error(msprintf(gettext("%s: Wrong number of output arguments: %d to %d expected.\n"), "numderivative", 1, 2));
    end
    //
    // Get input arguments
    __numderivative_f__ = varargin(1)
    if and(type(__numderivative_f__) <> [11 13 15 130]) then
        // Must be a function (uncompiled or compiled) or a list
        error(msprintf(gettext("%s: Wrong type for argument #%d: Function or list expected.\n"), "numderivative", 1));
    end
    if type(__numderivative_f__) == 15 then
        // List case
        // Check that the first element in the list is a function
        if and(type(__numderivative_f__(1)) <> [11 13]) then
            error(msprintf(gettext("%s: Wrong type for argument #%d: Function expected in first element of list.\n"), "numderivative", 1));
        end
        if length(__numderivative_f__) < 2 then
            error(msprintf(gettext("%s: Wrong number of elements in input argument #%d: At least %d elements expected, but current number is %d.\n"), "numderivative", 1, 2, length(__numderivative_f__)));
        end
    end

    //
    // Manage x, to get the size n.
    x = varargin(2);
    if type(x) ~= 1 then
        error(msprintf(gettext("%s: Wrong type for argument #%d: Matrix expected.\n"), "numderivative", 2));
    end
    [n, p] = size(x);
    if (n <> 1 & p <> 1) then
        error(msprintf(gettext("%s: Wrong size for input argument #%d: Vector expected.\n"), "numderivative", 2));
    end
    // Make x a column vector, if required
    if p <> 1 then
        x = x(:);
        [n, p] = size(x);
    end
    //
    // Manage h: make it a column vector, if required.
    h = [];
    if rhs >= 3 then
        h = varargin(3);
        if type(h) ~= 1 then
            error(msprintf(gettext("%s: Wrong type for argument #%d: Matrix expected.\n"), "numderivative", 3));
        end
        if h <> [] then
            if size(h, "*") <> 1 then
                [nrows, ncols] = size(h);
                if (nrows <> 1 & ncols <> 1) then
                    error(msprintf(gettext("%s: Wrong size for input argument #%d: Vector expected.\n"), "numderivative", 3));
                end
                if ncols <> 1 then
                    h = h(:);
                end
                if or(size(h) <> [n 1]) then
                    error(msprintf(gettext("%s: Incompatible input arguments #%d and #%d: Same sizes expected.\n"), "numderivative", 3, 1));
                end
            end
            if or(h < 0) then
                error(msprintf(gettext("%s: Wrong value for input argument #%d: Must be > %d.\n"), "numderivative", 3, 0));
            end
        end
    end

    order = 2;
    if (rhs >= 4 & varargin(4) <> []) then
        order = varargin(4);
        if type(order) ~= 1 then
            error(msprintf(gettext("%s: Wrong type for argument #%d: Matrix expected.\n"), "numderivative", 4));
        end
        if or(size(order) <> [1 1]) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), "numderivative", 4, 1, 1));
        end
        if and(order <> [1 2 4]) then
            error(msprintf(gettext("%s: Wrong value for input argument #%d: Must be in the set  {%s}.\n"), "numderivative", 4, "1, 2, 4"));
        end
    end

    H_form = "default";
    if (rhs >= 5 & varargin(5) <> []) then
        H_form = varargin(5);
        if type(H_form) ~= 10 then
            error(msprintf(gettext("%s: Wrong type for input argument #%d: String array expected.\n"), "numderivative", 5));
        end
        if or(size(H_form) <> [1 1]) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), "numderivative", 5, 1, 1));
        end
        if and(H_form <> ["default" "blockmat" "hypermat"]) then
            error(msprintf(gettext("%s: Wrong value for input argument #%d: Must be in the set  {%s}.\n"), "numderivative", 5, "default, blockmat, hypermat"));
        end
    end

    Q = eye(n, n);
    Q_not_given = %t;
    if (rhs >= 6 & varargin(6) <> []) then
        Q = varargin(6);
        Q_not_given = %f;
        if type(Q) ~= 1 then
            error(msprintf(gettext("%s: Wrong type for argument #%d: Matrix expected.\n"), "numderivative", 6));
        end
        if or(size(Q) <> [n n]) then
            error(msprintf(gettext("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), "numderivative", 6, n ,n));
        end
        if norm(clean(Q*Q'-eye(n, n))) > 0 then
            error(msprintf(gettext("%s: Q must be orthogonal.\n"), "numderivative"));
        end
    end

    //
    // Proceed...
    if h == [] then
        h_not_given = %t;
    else
        h_not_given = %f;
        // If h is scalar, expand to the same size as x.
        if size(h) == [1 1] then
            h = h * ones(x);
        end
    end
    //
    // Compute Jacobian
    if ( h_not_given ) then
        h = numderivative_step(x, order, 1);
    end
    J = numderivative_deriv1(__numderivative_f__, x, h, order, Q);
    //
    // Quick return if possible
    if lhs == 1 then
        return
    end

    m = size(J, 1);
    //
    // Compute Hessian matrix
    if ( h_not_given ) then
        h = numderivative_step(x, order, 2);
    end
    funForHList = list(numderivative_funForH, __numderivative_f__, h, order, Q);
    if ~Q_not_given then
        H = numderivative_deriv1(funForHList, x, h, order, Q);
    else
        H = numderivative_deriv2(funForHList, x, h, order, Q);
    end
    //
    // At this point, H is a m*n-by-n block matrix.
    // Update the format of the Hessian
    if H_form == "default" then
        // H has the old scilab form
        H = matrix(H', n*n, m)'
    end
    if H_form == "hypermat" then
        if m > 1 then
            // H is a hypermatrix if m > 1
            H = H';
            H = hypermat([n n m], H(:));
        end
    end
endfunction

//
// numderivative_step --
//   Returns the step for given x, given order and given derivative:
//   d = 1 is for Jacobian
//   d = 2 is for Hessian
// Uses the optimal step.
// Then scale the step depending on abs(x).
function h = numderivative_step(x, order, d)
    n = size(x, "*");
    select d
    case 1
        // For Jacobian
        select order
        case 1
            hdefault = sqrt(%eps);
        case 2
            hdefault = %eps^(1/3);
        case 4
            hdefault = %eps^(1/5);
        else
            lclmsg = gettext("%s: Unknown value %s for option %s.\n");
            error(msprintf(lclmsg,"numderivative_step", string(d), "d"));
        end
    case 2
        // For Hessian
        select order
        case 1
            hdefault = %eps^(1/3);
        case 2
            hdefault = %eps^(1/4);
        case 4
            hdefault = %eps^(1/6);
        else
            lclmsg = gettext("%s: Unknown value %s for option %s.\n");
            error(msprintf(lclmsg, "numderivative_step", string(d), "d"));
        end
    else
        lclmsg = gettext("%s: Unknown value %s for option %s.\n");
        error(msprintf(lclmsg, "numderivative_step", string(order), "order"));
    end
    // Convert this scalar into a vector, with same size as x
    // For zero entries in x, use the default.
    // For nonzero entries in x, scales by abs(x).
    h = hdefault * abs(x);
    h(x==0) = hdefault;
endfunction

//
// numderivative_funForH --
//   Returns the numerical derivative of __numderivative_f__.
//   This function is called to compute the numerical Hessian.
function J = numderivative_funForH(x, __numderivative_f__, h, order, Q)
    // Transpose !
    J = numderivative_deriv1(__numderivative_f__, x, h, order, Q)';
    J = J(:);
endfunction

// numderivative_deriv1 --
//   Computes the numerical gradient of __numderivative_f__, using the given step h.
//   This function is used for the computation of the jacobian matrix.
function g = numderivative_deriv1(__numderivative_f__, x, h, order, Q)
    n = size(x, "*");
    %Dy = []; // At this point, we do not know 'm' yet, so we cannot allocate Dy.
    select order
    case 1
        D = Q * diag(h);
        y = numderivative_evalf(__numderivative_f__, x);
        for i=1:n
            d = D(:, i);
            yplus = numderivative_evalf(__numderivative_f__, x+d);
            Dyi = (yplus-y)/h(i);
            %Dy = [%Dy Dyi];
        end
        g = %Dy*Q';
    case 2
        D = Q * diag(h);
        for i=1:n
            d = D(:, i);
            yplus = numderivative_evalf(__numderivative_f__, x+d);
            yminus = numderivative_evalf(__numderivative_f__, x-d);
            Dyi = (yplus-yminus)/(2*h(i));
            %Dy = [%Dy Dyi];
        end
        g = %Dy*Q';
    case 4
        D = Q * diag(h);
        for i=1:n
            d = D(:, i);
            yplus = numderivative_evalf(__numderivative_f__, x+d);
            yminus = numderivative_evalf(__numderivative_f__, x-d);
            yplus2 = numderivative_evalf(__numderivative_f__, x+2*d);
            yminus2 = numderivative_evalf(__numderivative_f__, x-2*d);
            dFh =  (yplus-yminus)/(2*h(i));
            dF2h = (yplus2-yminus2)/(4*h(i));
            Dyi = (4*dFh - dF2h)/3;
            %Dy = [%Dy Dyi];
        end
        g = %Dy*Q';
    end
endfunction

// numderivative_deriv2 --
//   Computes the numerical gradient of the argument __numderivative_f__, using the given step h.
//   This function is used for the computation of the hessian matrix, to take advantage of its symmetry
function g = numderivative_deriv2(__numderivative_f__, x, h, order, Q)
    n = size(x, "*");
    %Dy = zeros(m*n, n); // 'm' is known at this point, so we can allocate Dy to reduce memory operations
    select order
    case 1
        D = Q * diag(h);
        y = numderivative_evalf(__numderivative_f__, x);
        for i=1:n
            d = D(:, i);
            yplus = numderivative_evalf(__numderivative_f__, x+d);
            for j=0:m-1
                Dyi(1+j*n:i-1+j*n) = %Dy(i+j*n, 1:i-1)'; // Retrieving symmetric elements (will not be done for the first vector)
                Dyi(i+j*n:(j+1)*n) = (yplus(i+j*n:(j+1)*n)-y(i+j*n:(j+1)*n))/h(i); // Computing the new ones
            end
            %Dy(:, i) = Dyi;
        end
        g = %Dy*Q';
    case 2
        D = Q * diag(h);
        for i=1:n
            d = D(:, i);
            yplus = numderivative_evalf(__numderivative_f__, x+d);
            yminus = numderivative_evalf(__numderivative_f__, x-d);
            for j=0:m-1
                Dyi(1+j*n:i-1+j*n) = %Dy(i+j*n, 1:i-1)'; // Retrieving symmetric elements (will not be done for the first vector)
                Dyi(i+j*n:(j+1)*n) = (yplus(i+j*n:(j+1)*n)-yminus(i+j*n:(j+1)*n))/(2*h(i)); // Computing the new ones
            end
            %Dy(:, i) = Dyi;
        end
        g = %Dy*Q';
    case 4
        D = Q * diag(h);
        for i=1:n
            d = D(:, i);
            yplus = numderivative_evalf(__numderivative_f__, x+d);
            yminus = numderivative_evalf(__numderivative_f__, x-d);
            yplus2 = numderivative_evalf(__numderivative_f__, x+2*d);
            yminus2 = numderivative_evalf(__numderivative_f__, x-2*d);
            for j=0:m-1
                dFh(1+j*n:i-1+j*n) = %Dy(i+j*n, 1:i-1)'; // Retrieving symmetric elements (will not be done for the first vector)
                dFh(i+j*n:(j+1)*n) = (yplus(i+j*n:(j+1)*n)-yminus(i+j*n:(j+1)*n))/(2*h(i)); // Computing the new ones
                dF2h(1+j*n:i-1+j*n) = %Dy(i+j*n, 1:i-1)'; // Retrieving symmetric elements (will not be done for the first vector)
                dF2h(i+j*n:(j+1)*n) = (yplus2(i+j*n:(j+1)*n)-yminus2(i+j*n:(j+1)*n))/(4*h(i)); // Computing the new ones
            end
            Dyi = (4*dFh - dF2h)/3;
            %Dy(:, i) = Dyi;
        end
        g = %Dy*Q';
    end
endfunction

// numderivative_evalf --
// Computes the value of __numderivative_f__ at the point x.
// The argument __numderivative_f__ can be a function (macro or linked code) or a list.
function y = numderivative_evalf(__numderivative_f__, x)
    if type(__numderivative_f__) == 15 then
        // List case
        __numderivative_fun__ = __numderivative_f__(1);
        instr = "y = __numderivative_fun__(x, __numderivative_f__(2:$))";
    elseif or(type(__numderivative_f__) == [11 13 130]) then
        // Function case
        instr = "y = __numderivative_f__(x)";
    else
        error(msprintf(gettext("%s: Wrong type for input argument #%d: A function expected.\n"), "numderivative", 1));
    end
    ierr = execstr(instr, "errcatch")
    if ierr <> 0 then
        lamsg = lasterror();
        lclmsg = "%s: Error while evaluating the function: ""%s""\n";
        error(msprintf(gettext(lclmsg), "numderivative", lamsg));
    end
endfunction