1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - Rainer von Seggern
// Copyright (C) 2008 - Bruno Pincon
// Copyright (C) 2009 - INRIA - Michael Baudin
// Copyright (C) 2010 - DIGITEO - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
//
// PURPOSE
// First and second order numerical derivatives of a function F: R^n --> R^m
// by finite differences.
// J=J(x) is the m x n Jacobian (the gradient for m=1), and H=H(x) the Hessian
// of the m components of F at x. The default form of H is a mxn^2 matrix;
// in this form the Taylor series of F up to second order terms is given by:
//
// F(x+dx) = F(x) + J(x)*dx + 1/2*H(x)*(dx.*.dx) +...
//
// NOTES
// 1/ See derivative.cat for details of the parameters
//
// 2/ This function uses the 3 "internal" functions (following
// this one in this file) :
//
// %DF_ => used to compute the Hessian by "differentiating
// the derivative"
// %deriv1_ => contains the various finite difference formulae
// %R_ => to deal with F as this arg may be a scilab
// function or a list embedding a function with
// its parameters
//
function [J,H] = derivative(F, x, h, order, H_form, Q , verbose )
warnobsolete("numderivative","6.0")
[lhs,rhs]=argn();
if rhs<2 | rhs>6 then
error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"derivative",2,6));
end
if type(x) ~= 1 then
error(msprintf(gettext("%s: Wrong type for input argument #%d: N-dimensional array expected.\n"),"derivative",2));
end
[n,p] = size(x)
if p ~= 1 then
error(msprintf(gettext("%s: Wrong size for input argument #%d: A column vector expected.\n"),"derivative",2));
end
if ~exists("order","local") then
order = 2
elseif (order ~= 1 & order ~= 2 & order ~= 4) then
error(msprintf(gettext("%s: Order must be 1, 2 or 4.\n"),"derivative"));
end
if ~exists("H_form","local") then
H_form = "default"
end
if ~exists("Q","local") then
Q = eye(n,n);
else
if norm(clean(Q*Q'-eye(n,n)))>0 then
error(msprintf(gettext("%s: Q must be orthogonal.\n"),"derivative"));
end
end
if ~exists("h","local") then
h_not_given = %t
// stepsizes for approximation of first derivatives
select order
case 1
h = sqrt(%eps)
case 2
h = %eps^(1/3)
case 4
// TODO : check this, i found 1/5 instead !
h = %eps^(1/4)
end
else
h_not_given = %f
end
if ~exists("verbose","local") then
verbose = 0
end
if verbose == 1 then
mprintf("h = %s\n", string(h))
mprintf("order = %d\n", order)
mprintf("H_form = %s\n", H_form)
mprintf("Q = \n")
for i = 1:n
mprintf("%s\n", strcat(string(Q(i,:)), " "))
end
end
J = %deriv1_(F, x, h, order, Q)
m = size(J,1);
if lhs == 1 then
return
end
if h_not_given then
// stepsizes for approximation of second derivatives
select order
case 1
h = %eps^(1/3)
case 2
h = %eps^(1/4)
case 4
h = %eps^(1/6)
end
end
// H is a mxn^2 block matrix
H = %deriv1_(%DF_, x, h, order, Q)
if H_form == "default" then
// H has the old scilab form
H = matrix(H',n*n,m)'
end
if H_form == "hypermat" then
if m>1 then
// H is a hypermatrix if m>1
H=H';
H=hypermat([n n m],H(:));
end
end
if (H_form ~= "blockmat")&(H_form ~= "default")&(H_form ~= "hypermat") then
error(msprintf(gettext("%s: H_form must be ""default"",""blockmat"" or ""hypermat"", but current H_form=%s\n"),"derivative",H_form));
end
endfunction
function z=%DF_(x)
// Transpose !
z = %deriv1_(F, x, h, order, Q)';
z = z(:);
endfunction
function g=%deriv1_(F_, x, h, order, Q)
n=size(x,"*")
Dy=[];
select order
case 1
D = h*Q;
y=%R_(F_,x);
for d=D
Dy=[Dy %R_(F_,x+d)-y]
end
g=Dy*Q'/h
case 2
D = h*Q;
for d=D
Dy=[Dy %R_(F_,x+d)-%R_(F_,x-d)]
end
g=Dy*Q'/(2*h)
case 4
D = h*Q;
for d=D
dFh = (%R_(F_,x+d)-%R_(F_,x-d))/(2*h)
dF2h = (%R_(F_,x+2*d)-%R_(F_,x-2*d))/(4*h)
Dy=[Dy (4*dFh - dF2h)/3]
end
g = Dy*Q'
end
endfunction
function y=%R_(F_,x)
if type(F_)==15 then
if ( length(F_) < 2 ) then
error(msprintf(gettext("%s: Wrong number of elements in input argument #%d: At least %d elements expected, but current number is %d.\n"),"derivative",1,2,length(F_)));
end
R=F_(1);
if ( and(typeof(R) <> ["function" "funptr"]) ) then
error(msprintf(gettext("%s: Wrong type for element #%d in input argument #%d: A function is expected, but current type is %s.\n"),"derivative",1,1,typeof(R)));
end
y=R(x,F_(2:$));
// See extraction, list or tlist case: ...
// But if the extraction syntax is used within a function
// input calling sequence each returned list component is
// added to the function calling sequence.
elseif type(F_)==13 | type(F_)==11 then
y=F_(x);
else
error(msprintf(gettext("%s: Wrong type for input argument #%d: A function expected.\n"),"derivative",1));
end
endfunction
|