summaryrefslogtreecommitdiff
path: root/modules/optimization/macros/datafit.sci
blob: c1dd616da0296cc51716fc3560e3e014832806da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
//
function [p,err]=datafit(imp,G,varargin)
    //
    //         [p,err]=datafit([imp,] G [,DG],Z [,W],...)
    //
    //         Function used for fitting data to a model.
    // For a given function G(p,z), this function finds the best vector
    // of parameters p for approximating G(p,z_i)=0 for a set of measurement
    // vectors z_i. Vector p is found by minimizing
    //    G(p,z_1)'WG(p,z_1)+G(p,z_2)'WG(p,z_2)+...+G(p,z_n)'WG(p,z_n)
    //
    //      G: Scilab function (e=G(p,z), e: nex1, p: npx1, z: nzx1)
    //     p0: initial guess (size npx1)
    //      Z: matrix [z_1,z_2,...z_n] where z_i (nzx1) is the ith measurement
    //      W: weighting matrix of size nexne (optional)
    //     DG: partial of G wrt p (optional; S=DG(p,z), S: nexnp)
    //
    //                     Examples
    //
    //deff('y=FF(x)','y=a*(x-b)+c*x.*x')
    //X=[];Y=[];
    //a=34;b=12;c=14;for x=0:.1:3, Y=[Y,FF(x)+100*(rand()-.5)];X=[X,x];end
    //Z=[Y;X];
    //deff('e=G(p,z)','a=p(1),b=p(2),c=p(3),y=z(1),x=z(2),e=y-FF(x)')
    //[p,err]=datafit(G,Z,[3;5;10])
    //xset('window',0)
    //clf();
    //plot2d(X',Y',-1)
    //plot2d(X',FF(X)',5,'002')
    //a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
    //
    //a=34;b=12;c=14;
    //deff('s=DG(p,z)','y=z(1),x=z(2),s=-[x-p(2),-p(1),x*x]')
    //[p,err]=datafit(G,DG,Z,[3;5;10])
    //xset('window',1)
    //clf();
    //plot2d(X',Y',-1)
    //plot2d(X',FF(X)',5,'002')
    //a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
    //

    [lhs,rhs]=argn(0)

    if type(imp)<>1 then
        varargin(0)=G
        G=imp
        imp=0
    end

    if type(G)==15 then
        Gparams=G;Gparams(1)=null();
        G=G(1)
    else
        Gparams=list()
    end


    DG=varargin(1)
    if type(DG)==10|type(DG)==11|type(DG)==13 then
        GR=%t  //Jacobian provided
        varargin(1)=null()
    elseif type(DG)==15 then
        error(msprintf(gettext("%s: Jacobian cannot be a list, parameters must be set in G."),"datafit"));
    else
        GR=%f
    end

    Z=varargin(1);
    varargin(1)=null()
    if type(Z)<>1 then
        error(msprintf(gettext("%s: Wrong measurement matrix."),"datafit"));
    end

    nv=size(varargin)
    if nv>=1 then
        if size(varargin(1),2)==1 then // p0 ou 'b'
            W=1
        else
            W=varargin(1);varargin(1)=null()
            if size(W,1)~=size(W,2) then
                if size(W,1)==1 then
                    error(msprintf(gettext("%s: Initial guess must be a column vector."),"datafit"));
                else
                    error(msprintf(gettext("%s: Weighting matrix must be square."),"datafit"));
                end
            end
        end
    end
    if type(varargin(1))==1 then // p0
        p0=varargin(1)
    else
        p0=varargin(4)
    end

    [mz,nz]=size(Z);np=size(p0,"*");

    if type(G)==10 then  //form function to call hard coded external
        if size(Gparams)==0 then
            error(msprintf(gettext("%s: With hard coded function, user must give output size of G."),"datafit"));
        end
        m=Gparams(1);Gparams(1)=null()

        // foo(m,np,p,mz,nz,Z,pars,f)
        deff("f=G(p,Z)","f=call(''"+G+"'',"+..
        "m,1,''i'',np,2,''i'',p,3,''d'',mz,4,''i'',nz,5,''i'',Z,6,''d'',"+..
        "pars,7,''out'',["+string(m)+",1],8,''d'')")

        pars=[];
        for k=1:size(Gparams)
            p=Gparams(k)
            pars=[pars;p(:)]
        end
        Gparams=list()
    end

    if type(DG)==10 then //form function to call hard coded external
        // dfoo(m,np,p,mz,nz,Z,pars,f)
        deff("f=DG(p,Z)","f=call(''"+DG+"'',"+..
        "m,1,''i'',np,2,''i'',p,3,''d'',mz,4,''i'',nz,5,''i'',Z,6,''d'',"+..
        "pars,7,''out'',["+string(m)+","+string(np)+"],8,''d'')")
    end


    // form square cost gradient function DGG

    if Gparams==list() then
        GP   = "G(p,Z(:,i))"
        GPPV = "G(p+v,Z(:,i))"
        DGP  = "DG(p,Z(:,i))"
    else
        GP   = "G(p,Z(:,i),Gparams(:))"
        GPPV = "G(p+v,Z(:,i),Gparams(:))"
        DGP  = "DG(p,Z(:,i),Gparams(:))"
    end

    if ~GR then // finite difference
        DGG=["g=0*p";
        "pa=sqrt(%eps)*(1+1d-3*abs(p))"
        "f=0;"
        "for i=1:"+string(nz)
        "  g1="+GP
        "  f=f+g1''*W*g1"
        "end"
        "for j=1:"+string(np)
        "  v=0*p;v(j)=pa(j),"
        "  e=0;"
        "  for i=1:"+string(nz)
        "    g1="+GPPV
        "    e=e+g1''*W*g1"
        "  end"
        "  g(j)=e-f;"
        "end;"
        "g=g./pa;"]
    else // using Jacobian of G
        DGG="g=0;for i=1:nz,g=g+2*"+DGP+"''*W*"+GP+",end"
    end

    // form cost function for optim
    deff("[f,g,ind]=costf(p,ind)",[
    "if ind==2|ind==4 then "
    "  f=0;"
    "   for i=1:"+string(nz)
    "     g1="+GP
    "     f=f+g1''*W*g1"
    "   end"
    "else "
    "  f=0;"
    "end";
    "if ind==3|ind==4 then"
    DGG
    "else"
    " g=0*p;"
    "end"])

    [err,p]=optim(costf,varargin(:),imp=imp)


endfunction