1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
*
* This code comes from the NSWC fortran library with slight
* modifications from Bruno Pincon
*
SUBROUTINE SPFIT (X, Y, WGT, M, BREAK, L, Z, A, WK, IERR)
implicit none
integer M, L, IERR
DOUBLE PRECISION X(M), Y(M), WGT(M), BREAK(L)
DOUBLE PRECISION Z(*), A(*), WK(*)
C-----------------------------------------------------------------------
C WEIGHTED LEAST SQUARES CUBIC SPLINE FITTING
C-----------------------------------------------------------------------
integer N, J, K, LA, LW, LQ, LM1
DOUBLE PRECISION TEMP(20), DX, B, C
C---------------------
N = L + 2
C
C DEFINE THE KNOTS FOR THE B-SPLINES
C
WK(1) = BREAK(1)
WK(2) = BREAK(1)
WK(3) = BREAK(1)
WK(4) = BREAK(1)
do J = 2,L ! the conditions break(k) < break(k+1) are
WK(J + 3) = BREAK(J) ! verified in the interface
enddo
WK(L + 4) = BREAK(L)
WK(L + 5) = BREAK(L)
WK(L + 6) = BREAK(L)
C
C OBTAIN THE B-SPLINE COEFFICIENTS OF THE LEAST SQUARES FIT
C
LA = N + 5 ! start indices (in wk) for the others working area
LW = LA + N !
LQ = LW + N !
CALL BSLSQ (X, Y, WGT, M, WK(1), N, 4, WK(LA),
* WK(LW), WK(LQ), IERR)
*
* pour BSLSQ : IERR =-1 not enough points for the fit
* IERR = 0 OK
* IERR = 1 non uniqness of the solution (but a solution is computed)
*
IF (IERR .GE. 0) then
C OBTAIN THE COEFFICIENTS OF THE FIT IN TAYLOR SERIES FORM
CALL BSPP (WK(1), WK(LA), N, 4, BREAK,
* WK(LQ), LM1, TEMP)
K = LQ
DO J = 1,LM1
Z(J) = WK(K)
A(J) = WK(K + 1)
K = K + 4
enddo
! a trick to get the spline value (Z(L)) and first derivative
! (A(L)) on the last breakpoint : the last polynomial piece
! has the form Z(LM1) + A(LM1)(x- break(l-1)) + B(LM1)(...)
DX = BREAK(L) - BREAK(L-1)
B = WK(LQ + 4*(L-2) + 2)
C = WK(LQ + 4*(L-2) + 3)
Z(L) = Z(LM1) + DX*(A(LM1) + DX*(B + DX*C))
A(L) = A(LM1) + DX*( 2.d0*B + DX*3.d0*C)
endif
END
SUBROUTINE BSLSQ (TAU, GTAU, WGT, NTAU, T, N, K, A, WK, Q, IERR)
implicit none
integer NTAU, K, N, IERR
DOUBLE PRECISION TAU(NTAU), GTAU(NTAU), WGT(NTAU)
DOUBLE PRECISION T(*), A(N), WK(N), Q(K,N)
C-----------------------------------------------------------------------
C
C BSLSQ PRODUCES THE B-SPLINE COEFFICIENTS OF A PIECEWISE
C POLYNOMIAL P(X) OF ORDER K WHICH MINIMIZES
C
C SUM (WGT(J)*(P(TAU(J)) - GTAU(J))**2).
C
C
C INPUT ...
C
C TAU ARRAY OF LENGTH NTAU CONTAINING DATA POINT ABSCISSAE.
C GTAU ARRAY OF LENGTH NTAU CONTAINING DATA POINT ORDINATES.
C WGT ARRAY OF LENGTH NTAU CONTAINING THE WEIGHTS.
C NTAU NUMBER OF DATA POINTS TO BE FITTED.
C T KNOT SEQUENCE OF LENGTH N + K.
C N DIMENSION OF THE PIECEWISE POLYNOMIAL SPACE.
C K ORDER OF THE B-SPLINES.
C
C OUTPUT ...
C
C A ARRAY OF LENGTH N CONTAINING THE B-SPLINE COEFFICIENTS
C OF THE L2 APPROXIMATION.
C
C IERR INTEGER REPORTING THE STATUS OF THE RESULTS ...
C
C 0 THE COEFFICIENT MATRIX IS NONSIGULAR. THE
C UNIQUE LEAST SQUARES SOLUTION WAS OBTAINED.
C 1 THE COEFFICIENT MATRIX IS SINGULAR. A
C LEAST SQUARES SOLUTION WAS OBTAINED.
C -1 INPUT ERRORS WERE DETECTED.
C
C-----------------------------------------------------------------------
C
integer I, J, JJ, L, LEFT, LEFTMK, MM, ntau_count
double precision dw
external isearch
integer isearch
* some modifs :
* 1/ to avoid the sort on the data points use a dicho search to get
* the interval LEFT
* 2/ all the data points outside the interval definition of the spline
* ([T(K),T(N+1)]) or with a non positive weight are not taken into acount
* in the fit
*
*
* Note: the breakpoints goes to T(K) until T(N+1) (N+1-K+1 points)
* T(K) is the first break point (T(K) = X(1), ..., T(I) = X(I-K+1)
* T(N+1) = T(L+K-1) = X(L) is the last break point
C
do J = 1,N
A(J) = 0.D0
do I = 1,K
Q(I,J) = 0.d0
enddo
enddo
C
ntau_count = 0
LEFT = K
DO L = 1,NTAU
if ( TAU(L).ge.T(K) .and. TAU(L).le.T(N+1) ! added by Bruno
$ .and. WGT(L) .gt. 0.d0 ) then
ntau_count = ntau_count + 1
* find the index left such that T(LEFT) <= TAU(L) <= T(LEFT+1) (modified by Bruno)
LEFT = isearch(TAU(L), T(K), N-K+2) + 3
JJ = 0
CALL BSPVB (T, K, K, JJ, TAU(L), LEFT, WK)
LEFTMK = LEFT - K
DO MM = 1,K
DW = WK(MM)*WGT(L)
J = LEFTMK + MM
A(J) = DW*GTAU(L) + A(J)
I = 1
DO JJ = MM,K
Q(I,J) = WK(JJ)*DW + Q(I,J)
I = I + 1
enddo
enddo
endif
enddo
IF (ntau_count .ge. MAX(2,K)) then
C SOLVE THE NORMAL EQUATIONS
CALL BCHFAC (Q, K, N, WK, IERR)
CALL BCHSLV (Q, K, N, A)
else
ierr = -1
endif
end
SUBROUTINE BCHFAC (W, NB, N, DIAG, IFLAG)
implicit none
integer NB, N, IFLAG
DOUBLE PRECISION W(NB,N), DIAG(N)
C-----------------------------------------------------------------------
C FROM * A PRACTICAL GUIDE TO SPLINES * BY C. DE BOOR
C CONSTRUCTS CHOLESKY FACTORIZATION
C C = L * D * L-TRANSPOSE
C WITH L UNIT LOWER TRIANGULAR AND D DIAGONAL, FOR GIVEN MATRIX C OF
C ORDER N , IN CASE C IS (SYMMETRIC) POSITIVE SEMIDEFINITE
C AND BANDED, HAVING NB DIAGONALS AT AND BELOW THE MAIN DIAGONAL.
C
C****** INPUT ******
C
C N THE ORDER OF THE MATRIX C.
C
C NB THE BANDWIDTH OF C, I.E.,
C C(I,J) = 0 FOR ABS(I-J) .GT. NB .
C
C W WORK ARRAY OF SIZE NB BY N CONTAINING THE NB DIAGONALS
C IN ITS ROWS, WITH THE MAIN DIAGONAL IN ROW 1. PRECISELY,
C W(I,J) CONTAINS C(I+J-1,J), I=1,...,NB, J=1,...,N.
C FOR EXAMPLE, THE INTERESTING ENTRIES OF A SEVEN DIAGONAL
C SYMMETRIC MATRIX C OF ORDER 9 WOULD BE STORED IN W AS
C
C 11 22 33 44 55 66 77 88 99
C 21 32 43 54 65 76 87 98
C 31 42 53 64 75 86 97
C 41 52 63 74 85 96
C
C ALL OTHER ENTRIES OF W NOT IDENTIFIED WITH AN ENTRY OF C
C ARE NEVER REFERENCED.
C
C DIAG WORK ARRAY OF LENGTH N.
C
C****** O U T P U T ******
C T
C W CONTAINS THE CHOLESKY FACTORIZATION C = L*D*L WHERE
C W(1,I) = 1/D(I,I) AND W(I,J) = L(I-1+J,J) (I=2,...,NB).
C
C IFLAG 0 IF C IS NONSINGULAR AND 1 IF C IS SINGULAR.
C
C****** M E T H O D ******
C
C GAUSS ELIMINATION, ADAPTED TO THE SYMMETRY AND BANDEDNESS OF C , IS
C USED .
C NEAR ZERO PIVOTS ARE HANDLED IN A SPECIAL WAY. THE DIAGONAL ELE-
C MENT C(K,K) = W(1,K) IS SAVED INITIALLY IN DIAG(K), ALL K. AT THE K-
C TH ELIMINATION STEP, THE CURRENT PIVOT ELEMENT, VIZ. W(1,K), IS COM-
C PARED WITH ITS ORIGINAL VALUE, DIAG(K). IF, AS THE RESULT OF PRIOR
C ELIMINATION STEPS, THIS ELEMENT HAS BEEN REDUCED BY ABOUT A WORD
C LENGTH, (I.E., IF W(1,K)+DIAG(K) .LE. DIAG(K)), THEN THE PIVOT IS DE-
C CLARED TO BE ZERO, AND THE ENTIRE K-TH ROW IS DECLARED TO BE LINEARLY
C DEPENDENT ON THE PRECEDING ROWS. THIS HAS THE EFFECT OF PRODUCING
C X(K) = 0 WHEN SOLVING C*X = B FOR X, REGARDLESS OF B. JUSTIFIC-
C ATION FOR THIS IS AS FOLLOWS. IN CONTEMPLATED APPLICATIONS OF THIS
C PROGRAM, THE GIVEN EQUATIONS ARE THE NORMAL EQUATIONS FOR SOME LEAST-
C SQUARES APPROXIMATION PROBLEM, DIAG(K) = C(K,K) GIVES THE NORM-SQUARE
C OF THE K-TH BASIS FUNCTION, AND, AT THIS POINT, W(1,K) CONTAINS THE
C NORM-SQUARE OF THE ERROR IN THE LEAST-SQUARES APPROXIMATION TO THE K-
C TH BASIS FUNCTION BY LINEAR COMBINATIONS OF THE FIRST K-1 . HAVING
C W(1,K)+DIAG(K) .LE. DIAG(K) SIGNIFIES THAT THE K-TH FUNCTION IS LIN-
C EARLY DEPENDENT TO MACHINE ACCURACY ON THE FIRST K-1 FUNCTIONS, THERE
C FORE CAN SAFELY BE LEFT OUT FROM THE BASIS OF APPROXIMATING FUNCTIONS
C THE SOLUTION OF A LINEAR SYSTEM
C C*X = B
C IS EFFECTED BY THE SUCCESSION OF THE FOLLOWING T W O CALLS ...
C CALL BCHFAC (W, NB, N, DIAG, IFLAG) , TO GET FACTORIZATION
C CALL BCHSLV (W, NB, N, B, X ) , TO SOLVE FOR X.
C-----------------------------------------------------------------------
C
integer I, J, K, IMAX, JMAX, KPI, IPJ
double precision T, RATIO
IF (N .GT. 1) GO TO 10
IFLAG = 1
IF (W(1,1) .EQ. 0.D0) RETURN
IFLAG = 0
W(1,1) = 1.D0/W(1,1)
RETURN
C
C STORE THE DIAGONAL OF C IN DIAG
C
10 DO 11 K = 1,N
DIAG(K) = W(1,K)
11 CONTINUE
C
C FACTORIZATION
C
IFLAG = 0
DO 60 K = 1,N
T = W(1,K) + DIAG(K)
IF (T .NE. DIAG(K)) GO TO 30
IFLAG = 1
DO 20 J = 1,NB
W(J,K) = 0.D0
20 CONTINUE
GO TO 60
C
30 T = 1.D0/W(1,K)
W(1,K) = T
IMAX = MIN(NB - 1,N - K)
IF (IMAX .LT. 1) GO TO 60
JMAX = IMAX
DO 50 I = 1,IMAX
RATIO = T*W(I+1,K)
KPI = K + I
DO 40 J = 1,JMAX
IPJ = I + J
W(J,KPI) = W(J,KPI) - W(IPJ,K)*RATIO
40 CONTINUE
JMAX = JMAX - 1
W(I+1,K) = RATIO
50 CONTINUE
60 CONTINUE
RETURN
END
SUBROUTINE BCHSLV (W, NB, N, B)
implicit none
integer NB, N
DOUBLE PRECISION W(NB,N), B(N)
C-----------------------------------------------------------------------
C
C BCHSLV SOLVES THE LINEAR SYSTEM C*X = B FOR X WHEN W CONTAINS
C THE CHOLESKY FACTORIZATION OBTAINED BY THE SUBROUTINE BCHFAC
C FOR THE BANDED SYMMETRIC POSITIVE DEFINITE MATRIX C.
C
C INPUT ...
C
C N THE ORDER OF THE MATRIX C
C NB THE BANDWIDTH OF C
C W THE CHOLESKY FACTORIZATION OF C
C B VECTOR OF LENGTH N CONTAINING THE RIGHT SIDE
C
C OUTPUT ...
C
C B SOLUTION X OF THE LINEAR SYSTEM C*X = B
C
C T
C NOTE. THE FACTORIZATION C = L*D*L IS USED, WHERE L IS A
C UNIT LOWER TRIANGULAR MATRIX AND D A DIAGONAL MATRIX.
C
C-----------------------------------------------------------------------
C
integer J, NBM1, K, JMAX, JPK
IF (N .GT. 1) GO TO 10
B(1) = B(1)*W(1,1)
RETURN
C
C FORWARD SUBSTITUTION. SOLVE L*Y = B FOR Y AND STORE Y IN B.
C
10 NBM1 = NB - 1
DO 30 K = 1,N
JMAX = MIN(NBM1,N - K)
IF (JMAX .LT. 1) GO TO 30
DO 20 J = 1,JMAX
JPK = J + K
B(JPK) = B(JPK) - W(J + 1,K)*B(K)
20 CONTINUE
30 CONTINUE
C T -1
C BACKSUBSTITUTION. SOLVE L X = D Y FOR X AND STORE X IN B.
C
K = N
40 B(K) = B(K)*W(1,K)
JMAX = MIN(NBM1,N - K)
IF (JMAX .LT. 1) GO TO 60
DO 50 J = 1,JMAX
JPK = J + K
B(K) = B(K) - W(J + 1,K)*B(JPK)
50 CONTINUE
60 K = K - 1
IF (K .GT. 0) GO TO 40
RETURN
END
SUBROUTINE BSPVB (T, K, JHIGH, J, X, LEFT, BLIST)
implicit none
integer K, JHIGH, J, LEFT
DOUBLE PRECISION T(*), X, BLIST(K)
C-----------------------------------------------------------------------
C
C BSPVB CALCULATES THE VALUE OF ALL POSSIBLY NONZERO B-SPLINES
C AT X OF ORDER MAX(JHIGH,J + 1) WHERE T(K) .LE. X .LT. T(N+1).
C
C DESCRIPTION OF ARGUMENTS
C
C INPUT
C
C T - KNOT VECTOR OF LENGTH N + K.
C K - HIGHEST POSSIBLE ORDER OF THE B-SPLINES.
C JHIGH - ORDER OF B-SPLINES (1 .LE. JHIGH .LE. K).
C J - J .LE. 0 GIVES B-SPLINES OF ORDER JHIGH.
C J .GE. 1 ON A PREVIOUS CALL TO BSPVB THE
C B-SPLINES OF ORDER J WERE COM-
C PUTED AND STORED IN BLIST. IT IS
C ASSUMED THAT WORK HAS NOT BEEN
C MODIFIED AND THAT J .LT. K.
C X - ARGUMENT OF THE B-SPLINES.
C LEFT - LARGEST INTEGER SUCH THAT
C T(LEFT) .LE. X .LT. T(LEFT+1)
C
C OUTPUT
C
C BLIST - VECTOR OF LENGTH K FOR SPLINE VALUES.
C J - B-SPLINES OF ORDER J HAVE BEEN COMPUTED
C AND STORED IN BLIST.
C
C-----------------------------------------------------------------------
C WRITTEN BY CARL DE BOOR (UNIVERSITY OF WISCONSIN) AND MODIFIED
C BY A.H. MORRIS (NSWC).
C-----------------------------------------------------------------------
C
integer I, IMJ, L
double precision S, TIMJ, TI, TERM
IF (J .GT. 0) GO TO 10
J = 1
BLIST(1) = 1.D0
IF (J .GE. JHIGH) RETURN
C
10 S = 0.D0
DO 20 L = 1,J
I = LEFT + L
IMJ = I - J
TIMJ = T(IMJ)
TI = T(I)
TERM = BLIST(L)/(TI - TIMJ)
BLIST(L) = S + (TI - X)*TERM
S = (X - TIMJ)*TERM
20 CONTINUE
J = J + 1
BLIST(J) = S
IF (J .LT. JHIGH) GO TO 10
C
RETURN
END
SUBROUTINE BSPP (T, A, N, K, BREAK, C, L, WK)
implicit none
integer N, K, L
DOUBLE PRECISION T(*), A(N), BREAK(*), C(K,*), WK(K,*)
C-----------------------------------------------------------------------
C
C CONVERSION FROM B-SPLINE REPRESENTATION
C TO PIECEWISE POLYNOMIAL REPRESENTATION
C
C
C INPUT ...
C
C T KNOT SEQUENCE OF LENGTH N+K
C A B-SPLINE COEFFICIENT SEQUENCE OF LENGTH N
C N LENGTH OF A
C K ORDER OF THE B-SPLINES
C
C OUTPUT ...
C
C BREAK BREAKPOINT SEQUENCE, OF LENGTH L+1, CONTAINING
C (IN INCREASING ORDER) THE DISTINCT POINTS OF THE
C SEQUENCE T(K),...,T(N+1).
C C KXL MATRIX WHERE C(I,J) = (I-1)ST RIGHT DERIVATIVE
C OF THE PP AT BREAK(J) DIVIDED BY FACTORIAL(I-1).
C L NUMBER OF POLYNOMIALS WHICH FORM THE PP
C
C WORK AREA ...
C
C WK 2-DIMENSIONAL ARRAY OF DIMENSION (K,K+1)
C
C-----------------------------------------------------------------------
C
integer I, J, KM1, KP1, LEFT, JJ, JP1, KMJ, IL, ILJ, ILKJ
double precision TERM, DIFF, R, S, X
L = 0
BREAK(1) = T(K)
IF (K .EQ. 1) GO TO 100
KM1 = K - 1
KP1 = K + 1
C
C GENERAL K-TH ORDER CASE
C
DO 60 LEFT = K,N
IF (T(LEFT) .EQ. T(LEFT + 1)) GO TO 60
L = L + 1
BREAK(L + 1) = T(LEFT + 1)
DO 10 J = 1,K
JJ = LEFT - K + J
WK(J,1) = A(JJ)
10 CONTINUE
C
DO 21 J = 1,KM1
JP1 = J + 1
KMJ = K - J
DO 20 I = 1,KMJ
IL = I + LEFT
ILKJ = IL - KMJ
DIFF = T(IL) - T(ILKJ)
WK(I,JP1) = (WK(I+1,J) - WK(I,J))/DIFF
20 CONTINUE
21 CONTINUE
C
WK(1,KP1) = 1.D0
X = T(LEFT)
C(K,L) = WK(1,K)
R = 1.D0
DO 50 J = 1,KM1
JP1 = J + 1
S = 0.D0
DO 30 I = 1,J
IL = I + LEFT
ILJ = IL - J
TERM = WK(I,KP1)/(T(IL) - T(ILJ))
WK(I,KP1) = S + (T(IL) - X)*TERM
S = (X - T(ILJ))*TERM
30 CONTINUE
WK(JP1,KP1) = S
C
S = 0.D0
KMJ = K - J
DO 40 I = 1,JP1
S = S + WK(I,KMJ)*WK(I,KP1)
40 CONTINUE
R = (R*DBLE(KMJ))/DBLE(J)
C(KMJ,L) = R*S
50 CONTINUE
60 CONTINUE
RETURN
C
C PIECEWISE CONSTANT CASE
C
100 DO 110 LEFT = K,N
IF (T(LEFT) .EQ. T(LEFT + 1)) GO TO 110
L = L + 1
BREAK(L + 1) = T(LEFT + 1)
C(1,L) = A(LEFT)
110 CONTINUE
RETURN
END
|