1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
// Copyright (C) Samuel GOUGEON - 2013 : vectorization, code style
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function graypolarplot(theta,rho,z,varargin)
[lhs,rhs] = argn(0)
if rhs<=0 then
rho = 1:0.2:4
theta = (0:0.02:1)*2*%pi
z = 30+round(theta'*(1+rho.^2))
clf()
f = gcf()
f.color_map = hotcolormap(128)
f.background= 128
a = gca()
a.background = 128
a.foreground = 1
graypolarplot(theta,rho,z)
return
end
if rhs<3 then
error(msprintf(gettext("%s: Wrong number of input argument(s): At least %d expected.\n"), "graypolarplot", 3));
end
R = max(rho)
nv = size(varargin)
if nv>=1
strf = varargin(2)
else
strf = "030"
end
if nv>=2
rect = varargin(4)
else
rect = [-R -R R R]*1.1
end
// drawlater
fig = gcf();
immediate_drawing = fig.immediate_drawing;
fig.immediate_drawing = "off";
axes = gca();
axes.data_bounds = [rect(1), rect(2); rect(3), rect(4)];
axes.clip_state = "clipgrf";
drawGrayplot(theta,rho,z);
objectList = gce(); // get all the created objects to glue them at the end.
axes.isoview = "on";
axes.box = "off";
axes.axes_visible = ["off","off","off"];
axes.x_label.text = "";
axes.y_label.text = "";
axes.z_label.text = "";
step = R/5
r = step;
dr = 0.02*r;
for k = 1:4
xarc(-r, r, 2*r, 2*r, 0, 360*64)
objectList($ + 1) = gce();
arc = gce();
arc.line_style = 3;
xstring((r+dr)*cos(5*%pi/12),(r+dr)*sin(5*%pi/12), string(round(10*r)/10))
objectList($ + 1) = gce();
r=r+step
end
xarc(-r,r,2*r,2*r,0,360*64)
objectList($ + 1) = gce();
xstring((r+dr)*cos(5*%pi/12),(r+dr)*sin(5*%pi/12), string(round(10*r)/10))
objectList($ + 1) = gce();
rect = xstringl(0,0,"360");
w = rect(3);
h = rect(4);
r = R*1.05
for k = 0:11
xsegs([0 ; R*cos(k*(%pi/6))],[0 ; R*sin(k*(%pi/6))])
objectList($ + 1) = gce();
arc = gce();
arc.line_style = 3;
xstring((r+w/2)*cos(k*(%pi/6))-w/2, (r+h/2)*sin(k*(%pi/6))-h/2,string(k*30))
objectList($ + 1) = gce();
end
// glue all the created objects
glue(objectList);
// drawnow
fig.immediate_drawing = immediate_drawing;
endfunction
// ---------------------------------------------------------------------------
function [x,y] = polar2Cart(rho, theta)
x = rho * cos(theta);
y = rho * sin(theta);
endfunction
// ---------------------------------------------------------------------------
function [nbDecomp] = computeNeededDecompos(theta)
// Compute the needed decomposition for each patch
// minimal decompostion for each ring
nbFactesPerRingMin = 512;
nbDecomp = ceil(nbFactesPerRingMin / size(theta, "*"));
endfunction
// ---------------------------------------------------------------------------
function drawGrayplot(theta, rho, z)
// draw only the colored part of the grayplot
// the aim of the function is to draw a set of curved facets
// In previous versions, it used arcs to perform this.
// However, since arcs are drawn from the origin to the outside
// there were overlapping and cause Z fighting in 3D.
// Consequenlty we now decompose each curved facet into a set of rectangular
// facets.
nbRho = size(rho,"*");
nbTheta = size(theta,"*");
nbDecomposition = computeNeededDecompos(theta); // number of approximation facets
// first step decompose theta in smaller intervals
// Actually compute cosTheta and sinTheta for speed [vectorized]
t = (1:nbDecomposition) / nbDecomposition
[I,T] = meshgrid(theta, t)
interpolatedData = T(:,2:$).*I(:,2:$) + (1-T(:,1:$-1)).*I(:,1:$-1)
cosTheta = [cos(theta(1)) cos(interpolatedData(:))' ]
sinTheta = [sin(theta(1)) sin(interpolatedData(:))' ]
// compute the 4xnbFacets matrices for plot 3d
//
// get the 4 corners of a facet
// (we minimize the memory footprint, since big transient and final matrices
// are built)
Jmax = size(sinTheta,2)
[R, C] = meshgrid(rho, cosTheta)
R = R.*C
clear C
corner = R(1:Jmax-1,1:nbRho-1); xCoords = corner(:)'
corner = R(2:Jmax ,1:nbRho-1); xCoords(2,:) = corner(:)'
corner = R(2:Jmax ,2:nbRho); xCoords(3,:) = corner(:)'
corner = R(1:Jmax-1,2:nbRho); xCoords(4,:) = corner(:)'
[R, S] = meshgrid(rho, sinTheta)
R = R.*S
clear S
corner = R(1:Jmax-1,1:nbRho-1); yCoords = corner(:)'
corner = R(2:Jmax ,1:nbRho-1); yCoords(2,:) = corner(:)'
corner = R(2:Jmax ,2:nbRho); yCoords(3,:) = corner(:)'
corner = R(1:Jmax-1,2:nbRho); yCoords(4,:) = corner(:)'
clear R
// color is the same for each nbDecomposition facets
// keep the 4 outside colors of the patch
// to be able to switch between average or matlab color.
i = 1:nbRho
j = (0:Jmax-1)/ nbDecomposition + 1
[I, J] = meshgrid(i,j)
clear I
corner = z(J(1:$-1,1) , 1:$-1); colors = corner(:)'
corner = z(J(1:$-1,1)+1, 1:$-1); colors(2,:) = corner(:)'
corner = z(J(1:$-1,1)+1, 2:$); colors(3,:) = corner(:)'
corner = z(J(1:$-1,1) , 2:$); colors(4,:) = corner(:)'
clear J corner
// flat plot
nbQuadFacets = (nbRho - 1) * (Jmax - 1);
zCoords = zeros(4, nbQuadFacets);
// disable line draing and hidden color
plot3d(xCoords, yCoords, list(zCoords,colors));
gPlot = gce();
gPlot.color_mode = -1; // no wireframe
gPlot.hiddencolor = 0; // no hidden color
gPlot.color_flag = 2; // average color on each facets
// restore 2d view
axes = gca();
axes.view = "2d";
endfunction
|