1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
subroutine ssxmc(n,m,a,na,b,ncont,indcon,nblk,z,
1 wrka,wrk1,wrk2,iwrk,tol,mode)
c! calling sequence
c subroutine ssxmc(n,m,a,na,b,ncont,indcon,nblk,z,
c 1 wrka,wrk1,wrk2,iwrk,tol,mode)
c
c integer n,m,na,ncont,indcon,nblk(n),iwrk(m),mode
c
c real*8 a(na,n),b(na,m),z(na,n),wrka(n,m)
c real*8 wrk1(m),wrk2(m),tol
c
c arguments in
c
c n integer
c -the order of original state-space representation;
c declared first dimension of nblk,wrka; declared
c second dimension of a (and z, if mode .ne. 0)
c
c m integer
c -the number of system inputs; declared first dimension
c of iwrk,wrk1,wrk2; declared second dimension of b,wrka
c
c a double precision(n,n)
c -the original state dynamics matrix. note that this
c matrix is overwritten here
c
c na integer
c -the declared first dimension of a,b (and z, if
c mode .ne. 0). note that na .ge. n
c
c b double precision(n,m)
c -the original input/state matrix. note that this
c matrix is overwritten here
c
c tol double precision
c -if greater than the machine precision, tol is used
c as zero tolerance in rank determination when trans-
c forming (a,b,c): otherwise (eg tol = 0.0d+0), the
c machine precision is used
c
c mode integer
c -mode = 0 if accumulation of the orthogonal trans-
c formation z is not required, and non-zero if this
c matrix is required
c
c arguments out
c
c a double precision(ncont,ncont)
c -the upper block hessenberg state dynamics matrix of
c a controllable realization for the original system
c
c b double precision(ncont,m)
c -the transformed input/state matrix
c
c ncont integer
c -the order of controllable state-space representation
c
c indcon integer
c -the controllability index of transformed
c system representation
c
c nblk integer(indcon)
c -the dimensions of the diagonal blocks of the trans-
c formed a
c
c z double precision(n,n)
c -the orthogonal similarity transformation which
c reduces the given system to orthogonal canonical
c form. note that, if mode .eq. 0, z is not referenced
c and so can be a scalar dummy variable
c
c!working space
c
c wrka double precision(n,m)
c
c wrk1 double precision(m)
c
c wrk2 double precision(m)
c
c iwrk integer(m)
c
c!purpose
c
c to reduce the linear time-invariant multi-input system
c
c dx/dt = a * x + b * u,
c
c where a and b are (n x n) and (n x m) matrices respectively,
c to orthogonal canonical form using (and optionally accum-
c ulating) orthogonal similarity transformations.
c
c!method
c
c b is first qr-decomposed and the appropriate orthogonal
c similarity transformation applied to a. leaving the first
c rank(b) states unchanged, the resulting lower left block
c of a is now itself qr-decomposed and this new orthogonal
c similarity transformation applied. continuing in this
c manner, a completely controllable state-space pair (acont,
c bcont) is found for the given (a,b), where acont is upper
c block hessenberg with each sub-diagonal block of full row
c rank, and bcont is zero apart from its (independent) first
c rank(b) rows. note finally that the system controllability
c indices are easily calculable from the dimensions of the
c blocks of acont.
c
c!reference
c
c konstantinov, m.m., petkov, p.hr. and christov, n.d.
c "orthogonal invariants and canonical forms for linear
c controllable systems"
c proc. ifac 8th world congress, 1981.
c
c!auxiliary routines
c
c dqrdc (linpack)
c
c!originator
c
c p.hr.petkov, higher institute of mechanical and
c electrical engineering, sofia, bulgaria, april 1981
C Copyright SLICOT
c
c!comments
c
c none
c
c!user-supplied routines
c
c none
c!
c*******************************************************************
c
c
integer nblk(n),iwrk(m)
c
double precision a(na,n),b(na,m),z(na,n),tol
double precision wrka(n,m),wrk1(m),wrk2(m)
c
c local variables:
c
c
double precision abnorm,temp,thrtol
c
c common /smprec/eps
c
c common block smprec is shared with routine ddata which provides
c a value for eps, a machine-dependent parameter which specifies
c the relative precision of drealing-point arithmetic
c
c
c call ddata
c
abnorm = 0.0d+0
ist = 0
ncont = 0
indcon = 0
ni = 0
nb = n
mb = m
c
c use the larger of tol, eps in rank determination
c
c toleps = dble(n * n) * max(tol,eps)
c
if (mode .eq. 0) go to 30
c
c initialize z to identity matrix
c
do 20 i = 1, n
c
do 10 j = 1, n
10 z(i,j) = 0.0d+0
c
z(i,i) = 1.0d+0
20 continue
c
30 do 50 i = 1, n
c
do 40 j = 1, m
wrka(i,j) = b(i,j)
b(i,j) = 0.0d+0
40 continue
c
50 continue
c
60 ist = ist + 1
c
c qr decomposition with column pivoting
c
do 70 j = 1, mb
70 iwrk(j) = 0
c
call dqrdc(wrka,n,nb,mb,wrk1,iwrk,wrk2,1)
c
irnk = 0
mm = min(nb,mb)
if (abs(wrka(1,1)) .gt. abnorm) abnorm = abs(wrka(1,1))
c thresh = toleps * abnorm
c
c rank determination
c
thrtol=tol*abnorm*dble(n*n)
do 100 i = 1,mm
temp=abs(wrka(i,i))
if(temp.gt.thrtol.and.1.0d+0+temp.gt.1.0d+0) irnk = i
100 continue
c
if (irnk .eq. 0) go to 360
nj = ni
ni = ncont
ncont = ncont + irnk
indcon = indcon + 1
nblk(indcon) = irnk
lu = min(irnk,nb-1)
if (lu .eq. 0) go to 200
c
c premultiply appropriate row block of a by qtrans
c
call hhdml(lu,n,n,ni,ni,nb,nb,wrka,n,wrk1,a,na,11,ierr)
c
c postmultiply appropriate column block of a by q
c
call hhdml(lu,n,n,0,ni,n,nb,wrka,n,wrk1,a,na,00,ierr)
c
c if required, accumulate transformations
c
if (mode .ne. 0) call hhdml(lu,n,n,0,ni,n,nb,wrka,n,wrk1,z,na,
1 00,ierr)
c
200 if (irnk .lt. 2) go to 230
c
do 220 i = 2, irnk
im1 = i - 1
c
do 210 j = 1, im1
210 wrka(i,j) = 0.0d+0
c
220 continue
c
c backward permutation of the columns
c
230 do 270 j = 1, mb
if (iwrk(j) .lt. 0) go to 270
k = iwrk(j)
iwrk(j) = -k
240 continue
if (k .eq. j) go to 260
c
do 250 i = 1, irnk
temp = wrka(i,k)
wrka(i,k) = wrka(i,j)
wrka(i,j) = temp
250 continue
c
iwrk(k) = -iwrk(k)
k = -iwrk(k)
go to 240
260 continue
270 continue
c
if (ist .gt. 1) go to 300
c
c form b
c
do 290 i = 1, irnk
c
do 280 j = 1, m
280 b(i,j) = wrka(i,j)
c
290 continue
c
go to 330
c
c form a
c
300 do 320 i = 1, irnk
ia = ni + i
c
do 310 j = 1, mb
ja = nj + j
310 a(ia,ja) = wrka(i,j)
c
320 continue
c
330 if (irnk .eq. nb) go to 360
c
mb = irnk
nb = nb - irnk
c
do 350 i = 1, nb
ia = ncont + i
c
do 340 j = 1, mb
ja = ni + j
wrka(i,j) = a(ia,ja)
a(ia,ja) = 0.0d+0
340 continue
c
350 continue
go to 60
c
360 continue
c
return
end
|