1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
SUBROUTINE SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK,
$ BWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute the matrices of an H-infinity (sub)optimal n-state
C controller
C
C | AK | BK |
C K = |----|----|,
C | CK | DK |
C
C using modified Glover's and Doyle's 1988 formulas, for the system
C
C | A | B1 B2 | | A | B |
C P = |----|---------| = |---|---|
C | C1 | D11 D12 | | C | D |
C | C2 | D21 D22 |
C
C and for a given value of gamma, where B2 has as column size the
C number of control inputs (NCON) and C2 has as row size the number
C of measurements (NMEAS) being provided to the controller.
C
C It is assumed that
C
C (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C (A2) D12 is full column rank and D21 is full row rank,
C
C (A3) | A-j*omega*I B2 | has full column rank for all omega,
C | C1 D12 |
C
C (A4) | A-j*omega*I B1 | has full row rank for all omega.
C | C2 D21 |
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0,
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0,
C M-NCON >= NMEAS.
C
C GAMMA (input) DOUBLE PRECISION
C The value of gamma. It is assumed that gamma is
C sufficiently large so that the controller is admissible.
C GAMMA >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix AK.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C The leading N-by-NMEAS part of this array contains the
C controller input matrix BK.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading NCON-by-N part of this array contains the
C controller output matrix CK.
C
C LDCK INTEGER
C The leading dimension of the array CK.
C LDCK >= max(1,NCON).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C The leading NCON-by-NMEAS part of this array contains the
C controller input/output matrix DK.
C
C LDDK INTEGER
C The leading dimension of the array DK.
C LDDK >= max(1,NCON).
C
C RCOND (output) DOUBLE PRECISION array, dimension (4)
C RCOND(1) contains the reciprocal condition number of the
C control transformation matrix;
C RCOND(2) contains the reciprocal condition number of the
C measurement transformation matrix;
C RCOND(3) contains an estimate of the reciprocal condition
C number of the X-Riccati equation;
C RCOND(4) contains an estimate of the reciprocal condition
C number of the Y-Riccati equation.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C Tolerance used for controlling the accuracy of the applied
C transformations for computing the normalized form in
C SLICOT Library routine SB10PD. Transformation matrices
C whose reciprocal condition numbers are less than TOL are
C not allowed. If TOL <= 0, then a default value equal to
C sqrt(EPS) is used, where EPS is the relative machine
C precision.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK), where
C LIWORK = max(2*max(N,M-NCON,NP-NMEAS,NCON),N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal
C LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
C max(1,LW1,LW2,LW3,LW4,LW5,LW6), where
C LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)),
C LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)),
C LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2),
C LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2),
C LW5 = 2*N*N + N*(M+NP) +
C max(1,M*M + max(2*M1,3*N*N+max(N*M,10*N*N+12*N+5)),
C NP*NP + max(2*NP1,3*N*N +
C max(N*NP,10*N*N+12*N+5))),
C LW6 = 2*N*N + N*(M+NP) +
C max(1, M2*NP2 + NP2*NP2 + M2*M2 +
C max(D1*D1 + max(2*D1, (D1+D2)*NP2),
C D2*D2 + max(2*D2, D2*M2), 3*N,
C N*(2*NP2 + M2) +
C max(2*N*M2, M2*NP2 +
C max(M2*M2+3*M2, NP2*(2*NP2+
C M2+max(NP2,N)))))),
C with D1 = NP1 - M2, D2 = M1 - NP2,
C NP1 = NP - NP2, M1 = M - M2.
C For good performance, LDWORK must generally be larger.
C Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
C 2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1),
C 2*N*(N+2*Q)+max(1,4*Q*Q+
C max(2*Q,3*N*N+max(2*N*Q,10*N*N+12*N+5)),
C Q*(3*N+3*Q+max(2*N,4*Q+max(N,Q))))).
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the matrix | A-j*omega*I B2 | had not full
C | C1 D12 |
C column rank in respect to the tolerance EPS;
C = 2: if the matrix | A-j*omega*I B1 | had not full row
C | C2 D21 |
C rank in respect to the tolerance EPS;
C = 3: if the matrix D12 had not full column rank in
C respect to the tolerance TOL;
C = 4: if the matrix D21 had not full row rank in respect
C to the tolerance TOL;
C = 5: if the singular value decomposition (SVD) algorithm
C did not converge (when computing the SVD of one of
C the matrices |A B2 |, |A B1 |, D12 or D21).
C |C1 D12| |C2 D21|
C = 6: if the controller is not admissible (too small value
C of gamma);
C = 7: if the X-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 8: if the Y-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is
C zero [3].
C
C METHOD
C
C The routine implements the Glover's and Doyle's 1988 formulas [1],
C [2] modified to improve the efficiency as described in [3].
C
C REFERENCES
C
C [1] Glover, K. and Doyle, J.C.
C State-space formulae for all stabilizing controllers that
C satisfy an Hinf norm bound and relations to risk sensitivity.
C Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, Mass., 1995.
C
C [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
C Fortran 77 routines for Hinf and H2 design of continuous-time
C linear control systems.
C Rep. 98-14, Department of Engineering, Leicester University,
C Leicester, U.K., 1998.
C
C NUMERICAL ASPECTS
C
C The accuracy of the result depends on the condition numbers of the
C input and output transformations and on the condition numbers of
C the two Riccati equations, as given by the values of RCOND(1),
C RCOND(2), RCOND(3) and RCOND(4), respectively.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C Sept. 1999, Feb. 2000.
C
C KEYWORDS
C
C Algebraic Riccati equation, H-infinity optimal control, robust
C control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NCON, NMEAS, NP
DOUBLE PRECISION GAMMA, TOL
C ..
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 4 )
C ..
C .. Local Scalars ..
INTEGER INFO2, IWC, IWD, IWF, IWH, IWRK, IWTU, IWTY,
$ IWX, IWY, LW1, LW2, LW3, LW4, LW5, LW6,
$ LWAMAX, M1, M2, MINWRK, ND1, ND2, NP1, NP2
DOUBLE PRECISION TOLL
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C ..
C .. External Subroutines ..
EXTERNAL DLACPY, SB10PD, SB10QD, SB10RD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, SQRT
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -4
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -5
ELSE IF( GAMMA.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -12
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -14
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
INFO = -20
ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
INFO = -22
ELSE
C
C Compute workspace.
C
ND1 = NP1 - M2
ND2 = M1 - NP2
LW1 = ( N + NP1 + 1 )*( N + M2 ) + MAX( 3*( N + M2 ) + N + NP1,
$ 5*( N + M2 ) )
LW2 = ( N + NP2 )*( N + M1 + 1 ) + MAX( 3*( N + NP2 ) + N +
$ M1, 5*( N + NP2 ) )
LW3 = M2 + NP1*NP1 + MAX( NP1*MAX( N, M1 ), 3*M2 + NP1, 5*M2 )
LW4 = NP2 + M1*M1 + MAX( MAX( N, NP1 )*M1, 3*NP2 + M1, 5*NP2 )
LW5 = 2*N*N + N*( M + NP ) +
$ MAX( 1, M*M + MAX( 2*M1, 3*N*N +
$ MAX( N*M, 10*N*N + 12*N + 5 ) ),
$ NP*NP + MAX( 2*NP1, 3*N*N +
$ MAX( N*NP, 10*N*N + 12*N + 5 ) ) )
LW6 = 2*N*N + N*( M + NP ) +
$ MAX( 1, M2*NP2 + NP2*NP2 + M2*M2 +
$ MAX( ND1*ND1 + MAX( 2*ND1, ( ND1 + ND2 )*NP2 ),
$ ND2*ND2 + MAX( 2*ND2, ND2*M2 ), 3*N,
$ N*( 2*NP2 + M2 ) +
$ MAX( 2*N*M2, M2*NP2 +
$ MAX( M2*M2 + 3*M2, NP2*( 2*NP2 +
$ M2 + MAX( NP2, N ) ) ) ) ) )
MINWRK = N*M + NP*( N + M ) + M2*M2 + NP2*NP2 +
$ MAX( 1, LW1, LW2, LW3, LW4, LW5, LW6 )
IF( LDWORK.LT.MINWRK )
$ INFO = -27
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10FD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
RCOND( 1 ) = ONE
RCOND( 2 ) = ONE
RCOND( 3 ) = ONE
RCOND( 4 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
C
TOLL = TOL
IF( TOLL.LE.ZERO ) THEN
C
C Set the default value of the tolerance.
C
TOLL = SQRT( DLAMCH( 'Epsilon' ) )
END IF
C
C Workspace usage.
C
IWC = 1 + N*M
IWD = IWC + NP*N
IWTU = IWD + NP*M
IWTY = IWTU + M2*M2
IWRK = IWTY + NP2*NP2
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N )
CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IWC ), NP )
CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IWD ), NP )
C
C Transform the system so that D12 and D21 satisfy the formulas
C in the computation of the Hinf (sub)optimal controller.
C
CALL SB10PD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWTU ),
$ M2, DWORK( IWTY ), NP2, RCOND, TOLL, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = INFO2
RETURN
END IF
LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
C
IWX = IWRK
IWY = IWX + N*N
IWF = IWY + N*N
IWH = IWF + M*N
IWRK = IWH + N*NP
C
C Compute the (sub)optimal state feedback and output injection
C matrices.
C
CALL SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWX ), N, DWORK( IWY ),
$ N, RCOND(3), IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
$ BWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = INFO2 + 5
RETURN
END IF
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C Compute the Hinf (sub)optimal controller.
C
CALL SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWTU ), M2, DWORK( IWTY ),
$ NP2, DWORK( IWX ), N, DWORK( IWY ), N, AK, LDAK, BK,
$ LDBK, CK, LDCK, DK, LDDK, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
IF( INFO2.EQ.1 ) THEN
INFO = 6
RETURN
ELSE IF( INFO2.EQ.2 ) THEN
INFO = 9
RETURN
END IF
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10FD ***
END
|