summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/sb04rw.f
blob: e62b0bd0543452610a88c717069ebafeea84eeb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
      SUBROUTINE SB04RW( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, BA,
     $                   LDBA, D, DWORK )
C
C     RELEASE 4.0, WGS COPYRIGHT 2000.
C
C     PURPOSE
C
C     To construct the right-hand side D for a system of equations in
C     Hessenberg form solved via SB04RY (case with 1 right-hand side).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ABSCHR  CHARACTER*1
C             Indicates whether AB contains A or B, as follows:
C             = 'A':  AB contains A;
C             = 'B':  AB contains B.
C
C     UL      CHARACTER*1
C             Indicates whether AB is upper or lower Hessenberg matrix,
C             as follows:
C             = 'U':  AB is upper Hessenberg;
C             = 'L':  AB is lower Hessenberg.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix B.  M >= 0.
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,M)
C             The leading N-by-M part of this array must contain both 
C             the not yet modified part of the coefficient matrix C of
C             the Sylvester equation X + AXB = C, and both the currently
C             computed part of the solution of the Sylvester equation.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     INDX    (input) INTEGER
C             The position of the column/row of C to be used in the
C             construction of the right-hand side D.
C
C     AB      (input) DOUBLE PRECISION array, dimension (LDAB,*)
C             The leading N-by-N or M-by-M part of this array must
C             contain either A or B of the Sylvester equation
C             X + AXB = C.
C
C     LDAB    INTEGER
C             The leading dimension of array AB.
C             LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on
C             ABSCHR = 'A' or ABSCHR = 'B', respectively).
C
C     BA      (input) DOUBLE PRECISION array, dimension (LDBA,*)
C             The leading N-by-N or M-by-M part of this array must
C             contain either A or B of the Sylvester equation
C             X + AXB = C, the matrix not contained in AB.
C
C     LDBA    INTEGER
C             The leading dimension of array BA.
C             LDBA >= MAX(1,N) or LDBA >= MAX(1,M) (depending on
C             ABSCHR = 'B' or ABSCHR = 'A', respectively).
C
C     D       (output) DOUBLE PRECISION array, dimension (*)
C             The leading N or M part of this array (depending on
C             ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the
C             right-hand side.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             where LDWORK is equal to N or M (depending on ABSCHR = 'B'
C             or ABSCHR = 'A', respectively).
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     D. Sima, University of Bucharest, May 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         ABSCHR, UL
      INTEGER           INDX, LDAB, LDBA, LDC, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  AB(LDAB,*), BA(LDBA,*), C(LDC,*), D(*), DWORK(*)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV
C     .. Executable Statements ..
C
C     For speed, no tests on the input scalar arguments are made.
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
C
      IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C        Construct the column of the right-hand side.
C
         CALL DCOPY( N, C(1,INDX), 1, D, 1 )
         IF ( LSAME( UL, 'U' ) ) THEN
            IF ( INDX.GT.1 ) THEN
               CALL DGEMV( 'N', N, INDX-1, ONE, C, LDC, AB(1,INDX), 1,
     $                     ZERO, DWORK, 1 )
               CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1,
     $                     ONE, D, 1 )
            END IF
         ELSE
            IF ( INDX.LT.M ) THEN
               CALL DGEMV( 'N', N, M-INDX, ONE, C(1,INDX+1), LDC,
     $                     AB(INDX+1,INDX), 1, ZERO, DWORK, 1 )
               CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1, ONE, D,
     $                     1 )
            END IF
         END IF
      ELSE
C
C        Construct the row of the right-hand side.
C
         CALL DCOPY( M, C(INDX,1), LDC, D, 1 )
         IF ( LSAME( UL, 'U' ) ) THEN
            IF ( INDX.LT.N ) THEN
               CALL DGEMV( 'T', N-INDX, M, ONE, C(INDX+1,1), LDC,
     $                     AB(INDX,INDX+1), LDAB, ZERO, DWORK, 1 )
               CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE, D,
     $                     1 )
            END IF
         ELSE
            IF ( INDX.GT.1 ) THEN
               CALL DGEMV( 'T', INDX-1, M, ONE, C, LDC, AB(INDX,1),
     $                     LDAB, ZERO, DWORK, 1 )
               CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE, D,
     $                     1 )
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of SB04RW ***
      END