1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
SUBROUTINE SB04RV( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, BA,
$ LDBA, D, DWORK )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To construct the right-hand sides D for a system of equations in
C quasi-Hessenberg form solved via SB04RX (case with 2 right-hand
C sides).
C
C ARGUMENTS
C
C Mode Parameters
C
C ABSCHR CHARACTER*1
C Indicates whether AB contains A or B, as follows:
C = 'A': AB contains A;
C = 'B': AB contains B.
C
C UL CHARACTER*1
C Indicates whether AB is upper or lower Hessenberg matrix,
C as follows:
C = 'U': AB is upper Hessenberg;
C = 'L': AB is lower Hessenberg.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The order of the matrix B. M >= 0.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,M)
C The leading N-by-M part of this array must contain both
C the not yet modified part of the coefficient matrix C of
C the Sylvester equation X + AXB = C, and both the currently
C computed part of the solution of the Sylvester equation.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C INDX (input) INTEGER
C The position of the first column/row of C to be used in
C the construction of the right-hand side D.
C
C AB (input) DOUBLE PRECISION array, dimension (LDAB,*)
C The leading N-by-N or M-by-M part of this array must
C contain either A or B of the Sylvester equation
C X + AXB = C.
C
C LDAB INTEGER
C The leading dimension of array AB.
C LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on
C ABSCHR = 'A' or ABSCHR = 'B', respectively).
C
C BA (input) DOUBLE PRECISION array, dimension (LDBA,*)
C The leading N-by-N or M-by-M part of this array must
C contain either A or B of the Sylvester equation
C X + AXB = C, the matrix not contained in AB.
C
C LDBA INTEGER
C The leading dimension of array BA.
C LDBA >= MAX(1,N) or LDBA >= MAX(1,M) (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively).
C
C D (output) DOUBLE PRECISION array, dimension (*)
C The leading 2*N or 2*M part of this array (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the
C right-hand side stored as a matrix with two rows.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C where LDWORK is equal to 2*N or 2*M (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively).
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, May 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER ABSCHR, UL
INTEGER INDX, LDAB, LDBA, LDC, M, N
C .. Array Arguments ..
DOUBLE PRECISION AB(LDAB,*), BA(LDBA,*), C(LDC,*), D(*), DWORK(*)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMV
C .. Executable Statements ..
C
C For speed, no tests on the input scalar arguments are made.
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
C
IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C Construct the 2 columns of the right-hand side.
C
CALL DCOPY( N, C(1,INDX), 1, D(1), 2 )
CALL DCOPY( N, C(1,INDX+1), 1, D(2), 2 )
IF ( LSAME( UL, 'U' ) ) THEN
IF ( INDX.GT.1 ) THEN
CALL DGEMV( 'N', N, INDX-1, ONE, C, LDC, AB(1,INDX), 1,
$ ZERO, DWORK, 1 )
CALL DGEMV( 'N', N, INDX-1, ONE, C, LDC, AB(1,INDX+1),
$ 1, ZERO, DWORK(N+1), 1 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK(N+1), 1,
$ ONE, D(2), 2 )
END IF
ELSE
IF ( INDX.LT.M-1 ) THEN
CALL DGEMV( 'N', N, M-INDX-1, ONE, C(1,INDX+2), LDC,
$ AB(INDX+2,INDX), 1, ZERO, DWORK, 1 )
CALL DGEMV( 'N', N, M-INDX-1, ONE, C(1,INDX+2), LDC,
$ AB(INDX+2,INDX+1), 1, ZERO, DWORK(N+1), 1 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK(N+1), 1,
$ ONE, D(2), 2 )
END IF
END IF
ELSE
C
C Construct the 2 rows of the right-hand side.
C
CALL DCOPY( M, C(INDX,1), LDC, D(1), 2 )
CALL DCOPY( M, C(INDX+1,1), LDC, D(2), 2 )
IF ( LSAME( UL, 'U' ) ) THEN
IF ( INDX.LT.N-1 ) THEN
CALL DGEMV( 'T', N-INDX-1, M, ONE, C(INDX+2,1), LDC,
$ AB(INDX,INDX+2), LDAB, ZERO, DWORK, 1 )
CALL DGEMV( 'T', N-INDX-1, M, ONE, C(INDX+2,1), LDC,
$ AB(INDX+1,INDX+2), LDAB, ZERO, DWORK(M+1),
$ 1 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK(M+1), 1,
$ ONE, D(2), 2 )
END IF
ELSE
IF ( INDX.GT.1 ) THEN
CALL DGEMV( 'T', INDX-1, M, ONE, C, LDC, AB(INDX,1),
$ LDAB, ZERO, DWORK, 1 )
CALL DGEMV( 'T', INDX-1, M, ONE, C, LDC, AB(INDX+1,1),
$ LDAB, ZERO, DWORK(M+1), 1 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK(M+1), 1,
$ ONE, D(2), 2 )
END IF
END IF
END IF
C
RETURN
C *** Last line of SB04RV ***
END
|