1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
SUBROUTINE SB04PX( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
$ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To solve for the N1-by-N2 matrix X, 1 <= N1,N2 <= 2, in
C
C op(TL)*X*op(TR) + ISGN*X = SCALE*B,
C
C where TL is N1-by-N1, TR is N2-by-N2, B is N1-by-N2, and ISGN = 1
C or -1. op(T) = T or T', where T' denotes the transpose of T.
C
C ARGUMENTS
C
C Mode Parameters
C
C LTRANL LOGICAL
C Specifies the form of op(TL) to be used, as follows:
C = .FALSE.: op(TL) = TL,
C = .TRUE. : op(TL) = TL'.
C
C LTRANR LOGICAL
C Specifies the form of op(TR) to be used, as follows:
C = .FALSE.: op(TR) = TR,
C = .TRUE. : op(TR) = TR'.
C
C ISGN INTEGER
C Specifies the sign of the equation as described before.
C ISGN may only be 1 or -1.
C
C Input/Output Parameters
C
C N1 (input) INTEGER
C The order of matrix TL. N1 may only be 0, 1 or 2.
C
C N2 (input) INTEGER
C The order of matrix TR. N2 may only be 0, 1 or 2.
C
C TL (input) DOUBLE PRECISION array, dimension (LDTL,N1)
C The leading N1-by-N1 part of this array must contain the
C matrix TL.
C
C LDTL INTEGER
C The leading dimension of array TL. LDTL >= MAX(1,N1).
C
C TR (input) DOUBLE PRECISION array, dimension (LDTR,N2)
C The leading N2-by-N2 part of this array must contain the
C matrix TR.
C
C LDTR INTEGER
C The leading dimension of array TR. LDTR >= MAX(1,N2).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,N2)
C The leading N1-by-N2 part of this array must contain the
C right-hand side of the equation.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N1).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor. SCALE is chosen less than or equal to 1
C to prevent the solution overflowing.
C
C X (output) DOUBLE PRECISION array, dimension (LDX,N2)
C The leading N1-by-N2 part of this array contains the
C solution of the equation.
C Note that X may be identified with B in the calling
C statement.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N1).
C
C XNORM (output) DOUBLE PRECISION
C The infinity-norm of the solution.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if TL and -ISGN*TR have almost reciprocal
C eigenvalues, so TL or TR is perturbed to get a
C nonsingular equation.
C
C NOTE: In the interests of speed, this routine does not
C check the inputs for errors.
C
C METHOD
C
C The equivalent linear algebraic system of equations is formed and
C solved using Gaussian elimination with complete pivoting.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C NUMERICAL ASPECTS
C
C The algorithm is stable and reliable, since Gaussian elimination
C with complete pivoting is used.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 2000.
C This is a modification and slightly more efficient version of
C SLICOT Library routine SB03MU.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Discrete-time system, Sylvester equation, matrix algebra.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF, EIGHT
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
$ TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
C ..
C .. Scalar Arguments ..
LOGICAL LTRANL, LTRANR
INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
DOUBLE PRECISION SCALE, XNORM
C ..
C .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL BSWAP, XSWAP
INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
$ TEMP, U11, U12, U22, XMAX
C ..
C .. Local Arrays ..
LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
$ LOCU22( 4 )
DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
C ..
C .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, IDAMAX
C ..
C .. External Subroutines ..
EXTERNAL DSWAP
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C ..
C .. Data statements ..
DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
$ LOCU22 / 4, 3, 2, 1 /
DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
C ..
C .. Executable Statements ..
C
C Do not check the input parameters for errors.
C
INFO = 0
SCALE = ONE
C
C Quick return if possible.
C
IF( N1.EQ.0 .OR. N2.EQ.0 ) THEN
XNORM = ZERO
RETURN
END IF
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
SGN = ISGN
C
K = N1 + N1 + N2 - 2
GO TO ( 10, 20, 30, 50 )K
C
C 1-by-1: TL11*X*TR11 + ISGN*X = B11.
C
10 CONTINUE
TAU1 = TL( 1, 1 )*TR( 1, 1 ) + SGN
BET = ABS( TAU1 )
IF( BET.LE.SMLNUM ) THEN
TAU1 = SMLNUM
BET = SMLNUM
INFO = 1
END IF
C
GAM = ABS( B( 1, 1 ) )
IF( SMLNUM*GAM.GT.BET )
$ SCALE = ONE / GAM
C
X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
XNORM = ABS( X( 1, 1 ) )
RETURN
C
C 1-by-2:
C TL11*[X11 X12]*op[TR11 TR12] + ISGN*[X11 X12] = [B11 B12].
C [TR21 TR22]
C
20 CONTINUE
C
SMIN = MAX( MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
$ *ABS( TL( 1, 1 ) )*EPS,
$ SMLNUM )
TMP( 1 ) = TL( 1, 1 )*TR( 1, 1 ) + SGN
TMP( 4 ) = TL( 1, 1 )*TR( 2, 2 ) + SGN
IF( LTRANR ) THEN
TMP( 2 ) = TL( 1, 1 )*TR( 2, 1 )
TMP( 3 ) = TL( 1, 1 )*TR( 1, 2 )
ELSE
TMP( 2 ) = TL( 1, 1 )*TR( 1, 2 )
TMP( 3 ) = TL( 1, 1 )*TR( 2, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 1, 2 )
GO TO 40
C
C 2-by-1:
C op[TL11 TL12]*[X11]*TR11 + ISGN*[X11] = [B11].
C [TL21 TL22] [X21] [X21] [B21]
C
30 CONTINUE
SMIN = MAX( MAX( ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
$ *ABS( TR( 1, 1 ) )*EPS,
$ SMLNUM )
TMP( 1 ) = TL( 1, 1 )*TR( 1, 1 ) + SGN
TMP( 4 ) = TL( 2, 2 )*TR( 1, 1 ) + SGN
IF( LTRANL ) THEN
TMP( 2 ) = TL( 1, 2 )*TR( 1, 1 )
TMP( 3 ) = TL( 2, 1 )*TR( 1, 1 )
ELSE
TMP( 2 ) = TL( 2, 1 )*TR( 1, 1 )
TMP( 3 ) = TL( 1, 2 )*TR( 1, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
40 CONTINUE
C
C Solve 2-by-2 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
IPIV = IDAMAX( 4, TMP, 1 )
U11 = TMP( IPIV )
IF( ABS( U11 ).LE.SMIN ) THEN
INFO = 1
U11 = SMIN
END IF
U12 = TMP( LOCU12( IPIV ) )
L21 = TMP( LOCL21( IPIV ) ) / U11
U22 = TMP( LOCU22( IPIV ) ) - U12*L21
XSWAP = XSWPIV( IPIV )
BSWAP = BSWPIV( IPIV )
IF( ABS( U22 ).LE.SMIN ) THEN
INFO = 1
U22 = SMIN
END IF
IF( BSWAP ) THEN
TEMP = BTMP( 2 )
BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
BTMP( 1 ) = TEMP
ELSE
BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
END IF
IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
$ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
END IF
X2( 2 ) = BTMP( 2 ) / U22
X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
IF( XSWAP ) THEN
TEMP = X2( 2 )
X2( 2 ) = X2( 1 )
X2( 1 ) = TEMP
END IF
X( 1, 1 ) = X2( 1 )
IF( N1.EQ.1 ) THEN
X( 1, 2 ) = X2( 2 )
XNORM = ABS( X2( 1 ) ) + ABS( X2( 2 ) )
ELSE
X( 2, 1 ) = X2( 2 )
XNORM = MAX( ABS( X2( 1 ) ), ABS( X2( 2 ) ) )
END IF
RETURN
C
C 2-by-2:
C op[TL11 TL12]*[X11 X12]*op[TR11 TR12] + ISGN*[X11 X12] = [B11 B12]
C [TL21 TL22] [X21 X22] [TR21 TR22] [X21 X22] [B21 B22]
C
C Solve equivalent 4-by-4 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
50 CONTINUE
SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
SMIN = MAX( ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )*SMIN
SMIN = MAX( EPS*SMIN, SMLNUM )
T16( 1, 1 ) = TL( 1, 1 )*TR( 1, 1 ) + SGN
T16( 2, 2 ) = TL( 2, 2 )*TR( 1, 1 ) + SGN
T16( 3, 3 ) = TL( 1, 1 )*TR( 2, 2 ) + SGN
T16( 4, 4 ) = TL( 2, 2 )*TR( 2, 2 ) + SGN
IF( LTRANL ) THEN
T16( 1, 2 ) = TL( 2, 1 )*TR( 1, 1 )
T16( 2, 1 ) = TL( 1, 2 )*TR( 1, 1 )
T16( 3, 4 ) = TL( 2, 1 )*TR( 2, 2 )
T16( 4, 3 ) = TL( 1, 2 )*TR( 2, 2 )
ELSE
T16( 1, 2 ) = TL( 1, 2 )*TR( 1, 1 )
T16( 2, 1 ) = TL( 2, 1 )*TR( 1, 1 )
T16( 3, 4 ) = TL( 1, 2 )*TR( 2, 2 )
T16( 4, 3 ) = TL( 2, 1 )*TR( 2, 2 )
END IF
IF( LTRANR ) THEN
T16( 1, 3 ) = TL( 1, 1 )*TR( 1, 2 )
T16( 2, 4 ) = TL( 2, 2 )*TR( 1, 2 )
T16( 3, 1 ) = TL( 1, 1 )*TR( 2, 1 )
T16( 4, 2 ) = TL( 2, 2 )*TR( 2, 1 )
ELSE
T16( 1, 3 ) = TL( 1, 1 )*TR( 2, 1 )
T16( 2, 4 ) = TL( 2, 2 )*TR( 2, 1 )
T16( 3, 1 ) = TL( 1, 1 )*TR( 1, 2 )
T16( 4, 2 ) = TL( 2, 2 )*TR( 1, 2 )
END IF
IF( LTRANL .AND. LTRANR ) THEN
T16( 1, 4 ) = TL( 2, 1 )*TR( 1, 2 )
T16( 2, 3 ) = TL( 1, 2 )*TR( 1, 2 )
T16( 3, 2 ) = TL( 2, 1 )*TR( 2, 1 )
T16( 4, 1 ) = TL( 1, 2 )*TR( 2, 1 )
ELSE IF( LTRANL .AND. .NOT.LTRANR ) THEN
T16( 1, 4 ) = TL( 2, 1 )*TR( 2, 1 )
T16( 2, 3 ) = TL( 1, 2 )*TR( 2, 1 )
T16( 3, 2 ) = TL( 2, 1 )*TR( 1, 2 )
T16( 4, 1 ) = TL( 1, 2 )*TR( 1, 2 )
ELSE IF( .NOT.LTRANL .AND. LTRANR ) THEN
T16( 1, 4 ) = TL( 1, 2 )*TR( 1, 2 )
T16( 2, 3 ) = TL( 2, 1 )*TR( 1, 2 )
T16( 3, 2 ) = TL( 1, 2 )*TR( 2, 1 )
T16( 4, 1 ) = TL( 2, 1 )*TR( 2, 1 )
ELSE
T16( 1, 4 ) = TL( 1, 2 )*TR( 2, 1 )
T16( 2, 3 ) = TL( 2, 1 )*TR( 2, 1 )
T16( 3, 2 ) = TL( 1, 2 )*TR( 1, 2 )
T16( 4, 1 ) = TL( 2, 1 )*TR( 1, 2 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
BTMP( 3 ) = B( 1, 2 )
BTMP( 4 ) = B( 2, 2 )
C
C Perform elimination.
C
DO 100 I = 1, 3
XMAX = ZERO
C
DO 70 IP = I, 4
C
DO 60 JP = I, 4
IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
XMAX = ABS( T16( IP, JP ) )
IPSV = IP
JPSV = JP
END IF
60 CONTINUE
C
70 CONTINUE
C
IF( IPSV.NE.I ) THEN
CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
TEMP = BTMP( I )
BTMP( I ) = BTMP( IPSV )
BTMP( IPSV ) = TEMP
END IF
IF( JPSV.NE.I )
$ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
JPIV( I ) = JPSV
IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
INFO = 1
T16( I, I ) = SMIN
END IF
C
DO 90 J = I + 1, 4
T16( J, I ) = T16( J, I ) / T16( I, I )
BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
C
DO 80 K = I + 1, 4
T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
80 CONTINUE
C
90 CONTINUE
C
100 CONTINUE
C
IF( ABS( T16( 4, 4 ) ).LT.SMIN )
$ T16( 4, 4 ) = SMIN
IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
$ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ),
$ ABS( BTMP( 4 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
BTMP( 3 ) = BTMP( 3 )*SCALE
BTMP( 4 ) = BTMP( 4 )*SCALE
END IF
C
DO 120 I = 1, 4
K = 5 - I
TEMP = ONE / T16( K, K )
TMP( K ) = BTMP( K )*TEMP
C
DO 110 J = K + 1, 4
TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
110 CONTINUE
C
120 CONTINUE
C
DO 130 I = 1, 3
IF( JPIV( 4-I ).NE.4-I ) THEN
TEMP = TMP( 4-I )
TMP( 4-I ) = TMP( JPIV( 4-I ) )
TMP( JPIV( 4-I ) ) = TEMP
END IF
130 CONTINUE
C
X( 1, 1 ) = TMP( 1 )
X( 2, 1 ) = TMP( 2 )
X( 1, 2 ) = TMP( 3 )
X( 2, 2 ) = TMP( 4 )
XNORM = MAX( ABS( TMP( 1 ) ) + ABS( TMP( 3 ) ),
$ ABS( TMP( 2 ) ) + ABS( TMP( 4 ) ) )
C
RETURN
C *** Last line of SB04PX ***
END
|