summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/sb03qx.f
blob: 672d7f0bcfde2dc0fb5506cc558d9f38794d9913 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      SUBROUTINE SB03QX( TRANA, UPLO, LYAPUN, N, XANORM, T, LDT, U, LDU,
     $                   R, LDR, FERR, IWORK, DWORK, LDWORK, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To estimate a forward error bound for the solution X of a real
C     continuous-time Lyapunov matrix equation,
C
C            op(A)'*X + X*op(A) = C,
C
C     where op(A) = A or A' (A**T) and C is symmetric (C = C**T). The
C     matrix A, the right hand side C, and the solution X are N-by-N.
C     An absolute residual matrix, which takes into account the rounding
C     errors in forming it, is given in the array R.
C
C     ARGUMENTS 
C
C     Mode Parameters
C
C     TRANA   CHARACTER*1
C             Specifies the form of op(A) to be used, as follows:
C             = 'N':  op(A) = A    (No transpose);
C             = 'T':  op(A) = A**T (Transpose);
C             = 'C':  op(A) = A**T (Conjugate transpose = Transpose).
C
C     UPLO    CHARACTER*1
C             Specifies which part of the symmetric matrix R is to be
C             used, as follows:
C             = 'U':  Upper triangular part;
C             = 'L':  Lower triangular part.
C
C     LYAPUN  CHARACTER*1
C             Specifies whether or not the original Lyapunov equations 
C             should be solved, as follows:
C             = 'O':  Solve the original Lyapunov equations, updating
C                     the right-hand sides and solutions with the
C                     matrix U, e.g., X <-- U'*X*U;
C             = 'R':  Solve reduced Lyapunov equations only, without
C                     updating the right-hand sides and solutions.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and R.  N >= 0.
C
C     XANORM  (input) DOUBLE PRECISION
C             The absolute (maximal) norm of the symmetric solution
C             matrix X of the Lyapunov equation.  XANORM >= 0.
C
C     T       (input) DOUBLE PRECISION array, dimension (LDT,N)
C             The leading N-by-N upper Hessenberg part of this array
C             must contain the upper quasi-triangular matrix T in Schur
C             canonical form from a Schur factorization of A.
C
C     LDT     INTEGER
C             The leading dimension of array T.  LDT >= MAX(1,N).
C
C     U       (input) DOUBLE PRECISION array, dimension (LDU,N)
C             The leading N-by-N part of this array must contain the
C             orthogonal matrix U from a real Schur factorization of A.
C             If LYAPUN = 'R', the array U is not referenced.
C
C     LDU     INTEGER
C             The leading dimension of array U.  
C             LDU >= 1,        if LYAPUN = 'R';
C             LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,N)
C             On entry, if UPLO = 'U', the leading N-by-N upper
C             triangular part of this array must contain the upper
C             triangular part of the absolute residual matrix R, with
C             bounds on rounding errors added.
C             On entry, if UPLO = 'L', the leading N-by-N lower
C             triangular part of this array must contain the lower
C             triangular part of the absolute residual matrix R, with
C             bounds on rounding errors added.
C             On exit, the leading N-by-N part of this array contains
C             the symmetric absolute residual matrix R (with bounds on
C             rounding errors added), fully stored. 
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     FERR    (output) DOUBLE PRECISION
C             An estimated forward error bound for the solution X.
C             If XTRUE is the true solution, FERR bounds the magnitude
C             of the largest entry in (X - XTRUE) divided by the
C             magnitude of the largest entry in X.
C             If N = 0 or XANORM = 0, FERR is set to 0, without any
C             calculations.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N*N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 2*N*N.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal 
C                   value;
C             = N+1:  if the matrices T and -T' have common or very
C                   close eigenvalues; perturbed values were used to
C                   solve Lyapunov equations (but the matrix T is
C                   unchanged).
C
C     METHOD
C
C     The forward error bound is estimated using a practical error bound
C     similar to the one proposed in [1], based on the 1-norm estimator
C     in [2].
C
C     REFERENCES
C
C     [1] Higham, N.J.
C         Perturbation theory and backward error for AX-XB=C.
C         BIT, vol. 33, pp. 124-136, 1993.
C
C     [2] Higham, N.J.
C         FORTRAN codes for estimating the one-norm of a real or
C         complex matrix, with applications to condition estimation.
C         ACM Trans. Math. Softw., 14, pp. 381-396, 1988.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     FURTHER COMMENTS
C
C     The option LYAPUN = 'R' may occasionally produce slightly worse
C     or better estimates, and it is much faster than the option 'O'.
C     The routine can be also used as a final step in estimating a
C     forward error bound for the solution of a continuous-time
C     algebraic matrix Riccati equation.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Oct. 1998. Partly based on DGLSVX (and then SB03QD) by P. Petkov,
C     Tech. University of Sofia, March 1998 (and December 1998).
C
C     REVISIONS
C
C     February 6, 1999, V. Sima, Katholieke Univ. Leuven, Belgium.   
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          LYAPUN, TRANA, UPLO
      INTEGER            INFO, LDR, LDT, LDU, LDWORK, N
      DOUBLE PRECISION   FERR, XANORM
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   DWORK( * ), R( LDR, * ), T( LDT, * ),
     $                   U( LDU, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            LOWER, NOTRNA, UPDATE
      CHARACTER          TRANAT, UPLOW
      INTEGER            I, IJ, INFO2, ITMP, J, KASE, NN
      DOUBLE PRECISION   EST, SCALE, TEMP
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLANSY  
      EXTERNAL           DLANSY, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DLACON, MA02ED, MB01RU, SB03MY, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      NOTRNA = LSAME( TRANA,  'N' )
      UPDATE = LSAME( LYAPUN, 'O' )
C
      NN   = N*N
      INFO = 0
      IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
     $                       LSAME( TRANA, 'C' ) ) ) THEN
         INFO = -1           
      ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) ) 
     $   THEN
         INFO = -2           
      ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
         INFO = -3           
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( XANORM.LT.ZERO ) THEN
         INFO = -5
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDU.LT.1 .OR. ( UPDATE .AND. LDU.LT.N ) ) THEN
         INFO = -9
      ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDWORK.LT.2*NN ) THEN
         INFO = -15
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB03QX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      FERR = ZERO
      IF( N.EQ.0 .OR. XANORM.EQ.ZERO )
     $   RETURN
C
      ITMP = NN + 1
C
      IF( NOTRNA ) THEN
         TRANAT = 'T'
      ELSE
         TRANAT = 'N'
      END IF
C
C     Fill in the remaining triangle of the symmetric residual matrix.
C        
      CALL MA02ED( UPLO, N, R, LDR )
C
      KASE = 0
C
C     REPEAT
   10 CONTINUE
      CALL DLACON( NN, DWORK( ITMP ), DWORK, IWORK, EST, KASE )
      IF( KASE.NE.0 ) THEN
C
C        Select the triangular part of symmetric matrix to be used.
C        
         IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP ) ) 
     $       .GE.
     $       DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP ) )
     $     ) THEN
            UPLOW = 'U'
            LOWER = .FALSE.
         ELSE
            UPLOW = 'L'
            LOWER = .TRUE.
         END IF
C        
         IF( KASE.EQ.2 ) THEN
            IJ = 0
            IF( LOWER ) THEN
C
C              Scale the lower triangular part of symmetric matrix
C              by the residual matrix.
C
               DO 30 J = 1, N
                  DO 20 I = J, N
                     IJ = IJ + 1
                     DWORK( IJ ) = DWORK( IJ )*R( I, J )
   20             CONTINUE
                  IJ = IJ + J
   30          CONTINUE
            ELSE
C
C              Scale the upper triangular part of symmetric matrix
C              by the residual matrix.
C
               DO 50 J = 1, N
                  DO 40 I = 1, J
                     IJ = IJ + 1
                     DWORK( IJ ) = DWORK( IJ )*R( I, J )
   40             CONTINUE
                  IJ = IJ + N - J
   50          CONTINUE
            END IF
         END IF
C
         IF( UPDATE ) THEN
C
C           Transform the right-hand side: RHS := U'*RHS*U.
C           
            CALL MB01RU( UPLOW, 'Transpose', N, N, ZERO, ONE, DWORK, N,
     $                   U, LDU, DWORK, N, DWORK( ITMP ), NN, INFO2 )
         END IF
         CALL MA02ED( UPLOW, N, DWORK, N )
C
         IF( KASE.EQ.2 ) THEN
C
C           Solve op(T)'*Y + Y*op(T) = scale*RHS.
C
            CALL SB03MY( TRANA, N, T, LDT, DWORK, N, SCALE, INFO2 )
         ELSE
C
C           Solve op(T)*W + W*op(T)' = scale*RHS.
C
            CALL SB03MY( TRANAT, N, T, LDT, DWORK, N, SCALE, INFO2 )
         END IF
C
         IF( INFO2.GT.0 )
     $      INFO = N + 1
C
         IF( UPDATE ) THEN
C
C           Transform back to obtain the solution: Z := U*Z*U', with
C           Z = Y or Z = W.
C           
            CALL MB01RU( UPLOW, 'No transpose', N, N, ZERO, ONE, DWORK,
     $                   N, U, LDU, DWORK, N, DWORK( ITMP ), NN, INFO2 )
         END IF
C
         IF( KASE.EQ.1 ) THEN
            IJ = 0
            IF( LOWER ) THEN
C
C              Scale the lower triangular part of symmetric matrix
C              by the residual matrix.
C
               DO 70 J = 1, N
                  DO 60 I = J, N
                     IJ = IJ + 1
                     DWORK( IJ ) = DWORK( IJ )*R( I, J )
   60             CONTINUE
                  IJ = IJ + J
   70          CONTINUE
            ELSE
C
C              Scale the upper triangular part of symmetric matrix
C              by the residual matrix.
C
               DO 90 J = 1, N
                  DO 80 I = 1, J
                     IJ = IJ + 1
                     DWORK( IJ ) = DWORK( IJ )*R( I, J )
   80             CONTINUE
                  IJ = IJ + N - J
   90          CONTINUE
            END IF
         END IF
C
C        Fill in the remaining triangle of the symmetric matrix.
C        
         CALL MA02ED( UPLOW, N, DWORK, N )
         GO TO 10
      END IF
C
C     UNTIL KASE = 0
C
C     Compute the estimate of the relative error.
C
      TEMP = XANORM*SCALE
      IF( TEMP.GT.EST ) THEN
         FERR = EST / TEMP
      ELSE
         FERR = ONE
      END IF
C
      RETURN
C
C *** Last line of SB03QX ***
      END