summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/sb03oy.f
blob: 5d4d37126aa6f61a18d8cd6075d42b2f3581a20a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
      SUBROUTINE SB03OY( DISCR, LTRANS, ISGN, S, LDS, R, LDR, A, LDA,
     $                   SCALE, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To solve for the Cholesky factor  U  of  X,
C
C        op(U)'*op(U) = X,
C
C     where  U  is a two-by-two upper triangular matrix, either the
C     continuous-time two-by-two Lyapunov equation
C                                         2
C         op(S)'*X + X*op(S) = -ISGN*scale *op(R)'*op(R),
C
C     when DISCR = .FALSE., or the discrete-time two-by-two Lyapunov
C     equation
C                                         2
C         op(S)'*X*op(S) - X = -ISGN*scale *op(R)'*op(R),
C
C     when DISCR = .TRUE., where op(K) = K or K' (i.e., the transpose of
C     the matrix K),  S  is a two-by-two matrix with complex conjugate
C     eigenvalues,  R  is a two-by-two upper triangular matrix,
C     ISGN = -1 or 1,  and  scale  is an output scale factor, set less
C     than or equal to 1 to avoid overflow in  X.  The routine also
C     computes two matrices, B and A, so that
C                                   2
C        B*U = U*S  and  A*U = scale *R,  if  LTRANS = .FALSE.,  or
C                                   2
C        U*B = S*U  and  U*A = scale *R,  if  LTRANS = .TRUE.,
C     which are used by the general Lyapunov solver.
C     In the continuous-time case  ISGN*S  must be stable, so that its
C     eigenvalues must have strictly negative real parts.
C     In the discrete-time case  S  must be convergent if ISGN = 1, that
C     is, its eigenvalues must have moduli less than unity, or  S  must
C     be completely divergent if ISGN = -1, that is, its eigenvalues
C     must have moduli greater than unity.
C
C     ARGUMENTS 
C
C     Mode Parameters
C
C     DISCR   LOGICAL
C             Specifies the equation to be solved:       2
C             = .FALSE.: op(S)'*X + X*op(S) = -ISGN*scale *op(R)'*op(R);
C                                                        2
C             = .TRUE. : op(S)'*X*op(S) - X = -ISGN*scale *op(R)'*op(R).
C
C     LTRANS  LOGICAL
C             Specifies the form of op(K) to be used, as follows:
C             = .FALSE.:  op(K) = K    (No transpose);
C             = .TRUE. :  op(K) = K**T (Transpose).
C
C     ISGN    INTEGER
C             Specifies the sign of the equation as described before.
C             ISGN may only be 1 or -1.
C
C     Input/Output Parameters
C
C     S       (input/output) DOUBLE PRECISION array, dimension (LDS,2)
C             On entry, S must contain a 2-by-2 matrix.
C             On exit, S contains a 2-by-2 matrix B such that B*U = U*S,
C             if LTRANS = .FALSE., or U*B = S*U, if LTRANS = .TRUE..
C             Notice that if U is nonsingular then
C               B = U*S*inv( U ),  if LTRANS = .FALSE.
C               B = inv( U )*S*U,  if LTRANS = .TRUE..
C
C     LDS     INTEGER
C             The leading dimension of array S.  LDS >= 2.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,2)
C             On entry, R must contain a 2-by-2 upper triangular matrix.
C             The element R( 2, 1 ) is not referenced.
C             On exit, R contains U, the 2-by-2 upper triangular
C             Cholesky factor of the solution X, X = op(U)'*op(U).
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= 2.
C
C     A       (output) DOUBLE PRECISION array, dimension (LDA,2)
C             A contains a 2-by-2 upper triangular matrix A satisfying
C             A*U/scale = scale*R, if LTRANS = .FALSE., or
C             U*A/scale = scale*R, if LTRANS = .TRUE..
C             Notice that if U is nonsingular then
C               A = scale*scale*R*inv( U ),  if LTRANS = .FALSE.
C               A = scale*scale*inv( U )*R,  if LTRANS = .TRUE..
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= 2.
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor, scale, set less than or equal to 1 to
C             prevent the solution overflowing.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  if the Lyapunov equation is (nearly) singular
C                   (warning indicator);
C                   if DISCR = .FALSE., this means that while the
C                   matrix S has computed eigenvalues with negative real
C                   parts, it is only just stable in the sense that
C                   small perturbations in S can make one or more of the
C                   eigenvalues have a non-negative real part;
C                   if DISCR = .TRUE., this means that while the
C                   matrix S has computed eigenvalues inside the unit
C                   circle, it is nevertheless only just convergent, in
C                   the sense that small perturbations in S can make one
C                   or more of the eigenvalues lie outside the unit
C                   circle;
C                   perturbed values were used to solve the equation
C                   (but the matrix S is unchanged);
C             = 2:  if DISCR = .FALSE., and ISGN*S is not stable or
C                   if DISCR = .TRUE., ISGN = 1 and S is not convergent
C                   or if DISCR = .TRUE., ISGN = -1 and S is not
C                   completely divergent;
C             = 4:  if S has real eigenvalues.
C
C     NOTE: In the interests of speed, this routine does not check all
C           inputs for errors.
C
C     METHOD
C
C     The LAPACK scheme for solving 2-by-2 Sylvester equations is
C     adapted for 2-by-2 Lyapunov equations, but directly computing the
C     Cholesky factor of the solution.
C
C     REFERENCES
C
C     [1] Hammarling S. J.
C         Numerical solution of the stable, non-negative definite
C         Lyapunov equation.
C         IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB03CY by Sven Hammarling,
C     NAG Ltd., United Kingdom, November 1986.
C     Partly based on SB03CY and PLYAP2 by A. Varga, University of
C     Bochum, May 1992.
C
C     REVISIONS
C
C     Dec. 1997, April 1998.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form.
C
C     *****************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO, FOUR
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                    FOUR = 4.0D0 )
C     .. Scalar Arguments ..
      LOGICAL           DISCR, LTRANS
      INTEGER           INFO, ISGN, LDA, LDR, LDS
      DOUBLE PRECISION  SCALE
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), R(LDR,*), S(LDS,*)
C     .. Local Scalars ..
      DOUBLE PRECISION  ABSB, ABSG, ABST, ALPHA, BIGNUM, E1, E2, EPS,
     $                  ETA, P1, P3, P3I, P3R, S11, S12, S21, S22,
     $                  SCALOC, SGN, SMIN, SMLNUM, SNP, SNQ, SNT, TEMPI,
     $                  TEMPR, V1, V3
C     .. Local Arrays ..
      DOUBLE PRECISION  CSP(2), CSQ(2), CST(2), DELTA(2), DP(2), DT(2),
     $                  G(2), GAMMA(2), P2(2), T(2), TEMP(2), V2(2),
     $                  X11(2), X12(2), X21(2), X22(2), Y(2)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLAPY2, DLAPY3
      EXTERNAL          DLAMCH, DLAPY2, DLAPY3
C     .. External Subroutines ..
      EXTERNAL          DLABAD, DLANV2, SB03OV
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MAX, SIGN, SQRT
C     .. Executable Statements ..
C
C     The comments in this routine refer to notation and equation
C     numbers in sections 6 and 10 of [1].
C
C     Find the eigenvalue  lambda = E1 - i*E2  of s11.
C
      INFO = 0
      SGN = ISGN
      S11 = S(1,1)
      S12 = S(1,2)
      S21 = S(2,1)
      S22 = S(2,2)
C
C     Set constants to control overflow.
C
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SMLNUM*FOUR / EPS
      BIGNUM = ONE / SMLNUM
C
      SMIN = MAX( SMLNUM, EPS*MAX( ABS( S11 ), ABS( S12 ),
     $                             ABS( S21 ), ABS( S22 ) ) )
      SCALE = ONE
C
      CALL DLANV2( S11, S12, S21, S22, TEMPR, TEMPI, E1, E2, CSP, CSQ )
      IF ( TEMPI.EQ.ZERO ) THEN
         INFO = 4
         RETURN
      END IF
      ABSB = DLAPY2( E1, E2 )
      IF ( DISCR ) THEN
         IF ( SGN*( ABSB - ONE ).GE.ZERO ) THEN
            INFO = 2
            RETURN
         END IF
      ELSE
         IF ( SGN*E1.GE.ZERO ) THEN
            INFO = 2
            RETURN
         END IF
      END IF
C
C     Compute the cos and sine that define  Qhat.  The sine is real.
C
      TEMP(1) = S(1,1) - E1
      TEMP(2) = E2
      IF ( LTRANS ) TEMP(2) = -E2
      CALL SB03OV( TEMP, S(2,1), CSQ, SNQ )
C
C     beta in (6.9) is given by  beta = E1 + i*E2,  compute  t.
C
      TEMP(1) = CSQ(1)*S(1,2) - SNQ*S(1,1)
      TEMP(2) = CSQ(2)*S(1,2)
      TEMPR   = CSQ(1)*S(2,2) - SNQ*S(2,1)
      TEMPI   = CSQ(2)*S(2,2)
      T(1)    = CSQ(1)*TEMP(1) - CSQ(2)*TEMP(2) + SNQ*TEMPR
      T(2)    = CSQ(1)*TEMP(2) + CSQ(2)*TEMP(1) + SNQ*TEMPI
C
      IF ( LTRANS ) THEN
C                                                         (     -- )
C        Case op(M) = M'.  Note that the modified  R  is  ( p3  p2 ).
C                                                         ( 0   p1 )
C
C        Compute the cos and sine that define  Phat.
C
         TEMP(1) =  CSQ(1)*R(2,2) - SNQ*R(1,2)
         TEMP(2) = -CSQ(2)*R(2,2)
         CALL SB03OV( TEMP, -SNQ*R(1,1), CSP, SNP )
C
C        Compute p1, p2 and p3 of the relation corresponding to (6.11).
C
         P1 = TEMP(1)
         TEMP(1) =  CSQ(1)*R(1,2) + SNQ*R(2,2)
         TEMP(2) = -CSQ(2)*R(1,2)
         TEMPR   =  CSQ(1)*R(1,1)
         TEMPI   = -CSQ(2)*R(1,1)
         P2(1)   =  CSP(1)*TEMP(1) - CSP(2)*TEMP(2) + SNP*TEMPR
         P2(2)   = -CSP(1)*TEMP(2) - CSP(2)*TEMP(1) - SNP*TEMPI
         P3R     =  CSP(1)*TEMPR   + CSP(2)*TEMPI   - SNP*TEMP(1)
         P3I     =  CSP(1)*TEMPI   - CSP(2)*TEMPR   - SNP*TEMP(2)
      ELSE
C
C        Case op(M) = M.
C
C        Compute the cos and sine that define  Phat.
C
         TEMP(1) = CSQ(1)*R(1,1) + SNQ*R(1,2)
         TEMP(2) = CSQ(2)*R(1,1)
         CALL SB03OV( TEMP, SNQ*R(2,2), CSP, SNP )
C
C        Compute p1, p2 and p3 of (6.11).
C
         P1 = TEMP(1)
         TEMP(1) = CSQ(1)*R(1,2) - SNQ*R(1,1)
         TEMP(2) = CSQ(2)*R(1,2)
         TEMPR   = CSQ(1)*R(2,2)
         TEMPI   = CSQ(2)*R(2,2)
         P2(1)   = CSP(1)*TEMP(1) - CSP(2)*TEMP(2) + SNP*TEMPR
         P2(2)   = CSP(1)*TEMP(2) + CSP(2)*TEMP(1) + SNP*TEMPI
         P3R     = CSP(1)*TEMPR   + CSP(2)*TEMPI   - SNP*TEMP(1)
         P3I     = CSP(2)*TEMPR   - CSP(1)*TEMPI   + SNP*TEMP(2)
      END IF
C
C     Make  p3  real by multiplying by  conjg ( p3 )/abs( p3 )  to give
C
C     p3 := abs( p3 ).
C
      IF ( P3I.EQ.ZERO ) THEN
         P3 = ABS( P3R )
         DP(1) = SIGN( ONE, P3R )
         DP(2) = ZERO
      ELSE
         P3 = DLAPY2( P3R, P3I )
         DP(1) =  P3R/P3
         DP(2) = -P3I/P3
      END IF
C
C     Now compute the quantities v1, v2, v3 and y in (6.13) - (6.15),
C     or (10.23) - (10.25). Care is taken to avoid overflows.
C
      IF ( DISCR ) THEN
         ALPHA = SQRT( ABS( ONE - ABSB )*( ONE + ABSB ) )
      ELSE
         ALPHA = SQRT( ABS( TWO*E1 ) )
      END IF
C
      SCALOC = ONE
      IF( ALPHA.LT.SMIN ) THEN
         ALPHA = SMIN
         INFO = 1
      END IF
      ABST = ABS( P1 )
      IF( ALPHA.LT.ONE .AND. ABST.GT.ONE ) THEN
         IF( ABST.GT.BIGNUM*ALPHA )
     $      SCALOC = ONE / ABST
      END IF
      IF( SCALOC.NE.ONE ) THEN
         P1    = SCALOC*P1
         P2(1) = SCALOC*P2(1)
         P2(2) = SCALOC*P2(2)
         P3    = SCALOC*P3
         SCALE = SCALOC*SCALE
      END IF
      V1 = P1/ALPHA
C
      IF ( DISCR ) THEN
         G(1) = ( ONE - E1 )*( ONE + E1 ) + E2**2
         G(2) = -TWO*E1*E2
         ABSG =  DLAPY2( G(1), G(2) )
         SCALOC = ONE
         IF( ABSG.LT.SMIN ) THEN
            ABSG = SMIN
            INFO = 1
         END IF
         TEMP(1) = SGN*ALPHA*P2(1) + V1*( E1*T(1) - E2*T(2) )
         TEMP(2) = SGN*ALPHA*P2(2) + V1*( E1*T(2) + E2*T(1) )
         ABST    = MAX( ABS( TEMP(1) ), ABS( TEMP(2) ) )
         IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
            IF( ABST.GT.BIGNUM*ABSG )
     $         SCALOC = ONE / ABST
         END IF
         IF( SCALOC.NE.ONE ) THEN
            V1      = SCALOC*V1
            TEMP(1) = SCALOC*TEMP(1)
            TEMP(2) = SCALOC*TEMP(2)
            P1      = SCALOC*P1
            P2(1)   = SCALOC*P2(1)
            P2(2)   = SCALOC*P2(2)
            P3      = SCALOC*P3
            SCALE   = SCALOC*SCALE
         END IF
         TEMP(1) = TEMP(1)/ABSG
         TEMP(2) = TEMP(2)/ABSG
C
         SCALOC = ONE
         V2(1)  = G(1)*TEMP(1) + G(2)*TEMP(2)
         V2(2)  = G(1)*TEMP(2) - G(2)*TEMP(1)
         ABST   = MAX( ABS( V2(1) ), ABS( V2(2) ) )
         IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
            IF( ABST.GT.BIGNUM*ABSG )
     $         SCALOC = ONE / ABST
         END IF
         IF( SCALOC.NE.ONE ) THEN
            V1    = SCALOC*V1
            V2(1) = SCALOC*V2(1)
            V2(2) = SCALOC*V2(2)
            P1    = SCALOC*P1
            P2(1) = SCALOC*P2(1)
            P2(2) = SCALOC*P2(2)
            P3    = SCALOC*P3
            SCALE = SCALOC*SCALE
         END IF
         V2(1) = V2(1)/ABSG
         V2(2) = V2(2)/ABSG
C
         SCALOC  = ONE
         TEMP(1) = P1*T(1) - TWO*E2*P2(2)
         TEMP(2) = P1*T(2) + TWO*E2*P2(1)
         ABST    = MAX( ABS( TEMP(1) ), ABS( TEMP(2) ) )
         IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
            IF( ABST.GT.BIGNUM*ABSG )
     $         SCALOC = ONE / ABST
         END IF
         IF( SCALOC.NE.ONE ) THEN
            TEMP(1) = SCALOC*TEMP(1)
            TEMP(2) = SCALOC*TEMP(2)
            V1      = SCALOC*V1
            V2(1)   = SCALOC*V2(1)
            V2(2)   = SCALOC*V2(2)
            P3      = SCALOC*P3
            SCALE   = SCALOC*SCALE
         END IF
         TEMP(1) = TEMP(1)/ABSG
         TEMP(2) = TEMP(2)/ABSG
C
         SCALOC  = ONE
         Y(1)    = -( G(1)*TEMP(1) + G(2)*TEMP(2) )
         Y(2)    = -( G(1)*TEMP(2) - G(2)*TEMP(1) )
         ABST    = MAX( ABS( Y(1) ), ABS( Y(2) ) )
         IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
            IF( ABST.GT.BIGNUM*ABSG )
     $         SCALOC = ONE / ABST
         END IF
         IF( SCALOC.NE.ONE ) THEN
            Y(1)  = SCALOC*Y(1)
            Y(2)  = SCALOC*Y(2)
            V1    = SCALOC*V1
            V2(1) = SCALOC*V2(1)
            V2(2) = SCALOC*V2(2)
            P3    = SCALOC*P3
            SCALE = SCALOC*SCALE
         END IF
         Y(1) = Y(1)/ABSG
         Y(2) = Y(2)/ABSG
      ELSE
C
         SCALOC = ONE
         IF( ABSB.LT.SMIN ) THEN
            ABSB = SMIN
            INFO = 1
         END IF
         TEMP(1) = SGN*ALPHA*P2(1) + V1*T(1)
         TEMP(2) = SGN*ALPHA*P2(2) + V1*T(2)
         ABST    = MAX( ABS( TEMP(1) ), ABS( TEMP(2) ) )
         IF( ABSB.LT.ONE .AND. ABST.GT.ONE ) THEN
            IF( ABST.GT.BIGNUM*ABSB )
     $         SCALOC = ONE / ABST
         END IF
         IF( SCALOC.NE.ONE ) THEN
            V1      = SCALOC*V1
            TEMP(1) = SCALOC*TEMP(1)
            TEMP(2) = SCALOC*TEMP(2)
            P2(1)   = SCALOC*P2(1)
            P2(2)   = SCALOC*P2(2)
            P3      = SCALOC*P3
            SCALE   = SCALOC*SCALE
         END IF
         TEMP(1) = TEMP(1)/( TWO*ABSB )
         TEMP(2) = TEMP(2)/( TWO*ABSB )
         SCALOC  = ONE
         V2(1)   = -( E1*TEMP(1) + E2*TEMP(2) )
         V2(2)   = -( E1*TEMP(2) - E2*TEMP(1) )
         ABST = MAX( ABS( V2(1) ), ABS( V2(2) ) )
         IF( ABSB.LT.ONE .AND. ABST.GT.ONE ) THEN
            IF( ABST.GT.BIGNUM*ABSB )
     $         SCALOC = ONE / ABST
         END IF
         IF( SCALOC.NE.ONE ) THEN
            V1    = SCALOC*V1
            V2(1) = SCALOC*V2(1)
            V2(2) = SCALOC*V2(2)
            P2(1) = SCALOC*P2(1)
            P2(2) = SCALOC*P2(2)
            P3    = SCALOC*P3
            SCALE = SCALOC*SCALE
         END IF
         V2(1) = V2(1)/ABSB
         V2(2) = V2(2)/ABSB
         Y(1)  = P2(1) - ALPHA*V2(1)
         Y(2)  = P2(2) - ALPHA*V2(2)
      END IF
C
      SCALOC = ONE
      V3     = DLAPY3( P3, Y(1), Y(2) )
      IF( ALPHA.LT.ONE .AND. V3.GT.ONE ) THEN
         IF( V3.GT.BIGNUM*ALPHA )
     $      SCALOC = ONE / V3
      END IF
      IF( SCALOC.NE.ONE ) THEN
         V1    = SCALOC*V1
         V2(1) = SCALOC*V2(1)
         V2(2) = SCALOC*V2(2)
         V3    = SCALOC*V3
         P3    = SCALOC*P3
         SCALE = SCALOC*SCALE
      END IF
      V3 = V3/ALPHA
C
      IF ( LTRANS ) THEN
C
C        Case op(M) = M'.
C
C        Form  X = conjg( Qhat' )*v11.
C
         X11(1) =  CSQ(1)*V3
         X11(2) =  CSQ(2)*V3
         X21(1) =  SNQ*V3
         X12(1) =  CSQ(1)*V2(1) + CSQ(2)*V2(2) - SNQ*V1
         X12(2) = -CSQ(1)*V2(2) + CSQ(2)*V2(1)
         X22(1) =  CSQ(1)*V1 + SNQ*V2(1)
         X22(2) = -CSQ(2)*V1 - SNQ*V2(2)
C
C        Obtain u11 from the RQ-factorization of X. The conjugate of
C        X22 should be taken.
C
         X22(2) = -X22(2)
         CALL SB03OV( X22, X21(1), CST, SNT )
         R(2,2) = X22(1)
         R(1,2) = CST(1)*X12(1) - CST(2)*X12(2) + SNT*X11(1)
         TEMPR  = CST(1)*X11(1) + CST(2)*X11(2) - SNT*X12(1)
         TEMPI  = CST(1)*X11(2) - CST(2)*X11(1) - SNT*X12(2)
         IF ( TEMPI.EQ.ZERO ) THEN
            R(1,1) = ABS( TEMPR )
            DT(1)  = SIGN( ONE, TEMPR )
            DT(2)  = ZERO
         ELSE
            R(1,1) =  DLAPY2( TEMPR, TEMPI )
            DT(1)  =  TEMPR/R(1,1)
            DT(2)  = -TEMPI/R(1,1)
         END IF
      ELSE
C
C        Case op(M) = M.
C
C        Now form  X = v11*conjg( Qhat' ).
C
         X11(1) =  CSQ(1)*V1 - SNQ*V2(1)
         X11(2) = -CSQ(2)*V1 + SNQ*V2(2)
         X21(1) = -SNQ*V3
         X12(1) =  CSQ(1)*V2(1) + CSQ(2)*V2(2) + SNQ*V1
         X12(2) = -CSQ(1)*V2(2) + CSQ(2)*V2(1)
         X22(1) =  CSQ(1)*V3
         X22(2) =  CSQ(2)*V3
C
C        Obtain u11 from the QR-factorization of X.
C
         CALL SB03OV( X11, X21(1), CST, SNT )
         R(1,1) = X11(1)
         R(1,2) = CST(1)*X12(1) + CST(2)*X12(2) + SNT*X22(1)
         TEMPR  = CST(1)*X22(1) - CST(2)*X22(2) - SNT*X12(1)
         TEMPI  = CST(1)*X22(2) + CST(2)*X22(1) - SNT*X12(2)
         IF ( TEMPI.EQ.ZERO ) THEN
            R(2,2) = ABS( TEMPR )
            DT(1)  = SIGN( ONE, TEMPR )
            DT(2)  = ZERO
         ELSE
            R(2,2) =  DLAPY2( TEMPR, TEMPI )
            DT(1)  =  TEMPR/R(2,2)
            DT(2)  = -TEMPI/R(2,2)
         END IF
      END IF
C
C     The computations below are not needed when B and A are not
C     useful. Compute delta, eta and gamma as in (6.21) or (10.26).
C
      IF ( ( Y(1).EQ.ZERO ).AND.( Y(2).EQ.ZERO ) ) THEN
         DELTA(1) = ZERO
         DELTA(2) = ZERO
         GAMMA(1) = ZERO
         GAMMA(2) = ZERO
         ETA = ALPHA
      ELSE
         DELTA(1) =  Y(1)/V3
         DELTA(2) =  Y(2)/V3
         GAMMA(1) = -ALPHA*DELTA(1)
         GAMMA(2) = -ALPHA*DELTA(2)
         ETA = P3/V3
         IF ( DISCR ) THEN
            TEMPR    = E1*DELTA(1) - E2*DELTA(2)
            DELTA(2) = E1*DELTA(2) + E2*DELTA(1)
            DELTA(1) = TEMPR
         END IF
      END IF
C
      IF ( LTRANS ) THEN
C
C        Case op(M) = M'.
C
C        Find  X = conjg( That' )*( inv( v11 )*s11hat*v11 ).
C        ( Defer the scaling.)
C
         X11(1) =  CST(1)*E1 + CST(2)*E2
         X11(2) = -CST(1)*E2 + CST(2)*E1
         X21(1) =  SNT*E1
         X21(2) = -SNT*E2
         X12(1) =  SGN*(  CST(1)*GAMMA(1) + CST(2)*GAMMA(2) ) - SNT*E1
         X12(2) =  SGN*( -CST(1)*GAMMA(2) + CST(2)*GAMMA(1) ) - SNT*E2
         X22(1) =  CST(1)*E1 + CST(2)*E2 + SGN*SNT*GAMMA(1)
         X22(2) =  CST(1)*E2 - CST(2)*E1 - SGN*SNT*GAMMA(2)
C
C        Now find  B = X*That. ( Include the scaling here.)
C
         S(1,1) = CST(1)*X11(1) + CST(2)*X11(2) - SNT*X12(1)
         TEMPR  = CST(1)*X21(1) + CST(2)*X21(2) - SNT*X22(1)
         TEMPI  = CST(1)*X21(2) - CST(2)*X21(1) - SNT*X22(2)
         S(2,1) = DT(1)*TEMPR   - DT(2)*TEMPI
         TEMPR  = CST(1)*X12(1) - CST(2)*X12(2) + SNT*X11(1)
         TEMPI  = CST(1)*X12(2) + CST(2)*X12(1) + SNT*X11(2)
         S(1,2) = DT(1)*TEMPR   + DT(2)*TEMPI
         S(2,2) = CST(1)*X22(1) - CST(2)*X22(2) + SNT*X21(1)
C
C        Form  X = ( inv( v11 )*p11 )*conjg( Phat' ).
C
         TEMPR  =  DP(1)*ETA
         TEMPI  = -DP(2)*ETA
         X11(1) =  CSP(1)*TEMPR - CSP(2)*TEMPI + SNP*DELTA(1)
         X11(2) =  CSP(1)*TEMPI + CSP(2)*TEMPR - SNP*DELTA(2)
         X21(1) =  SNP*ALPHA
         X12(1) = -SNP*TEMPR + CSP(1)*DELTA(1) - CSP(2)*DELTA(2)
         X12(2) = -SNP*TEMPI - CSP(1)*DELTA(2) - CSP(2)*DELTA(1)
         X22(1) =  CSP(1)*ALPHA
         X22(2) = -CSP(2)*ALPHA
C
C        Finally form  A = conjg( That' )*X.
C
         TEMPR  = CST(1)*X11(1) - CST(2)*X11(2) - SNT*X21(1)
         TEMPI  = CST(1)*X22(2) + CST(2)*X22(1)
         A(1,1) = DT(1)*TEMPR   + DT(2)*TEMPI
         TEMPR  = CST(1)*X12(1) - CST(2)*X12(2) - SNT*X22(1)
         TEMPI  = CST(1)*X12(2) + CST(2)*X12(1) - SNT*X22(1)
         A(1,2) = DT(1)*TEMPR   + DT(2)*TEMPI
         A(2,1) = ZERO
         A(2,2) = CST(1)*X22(1) + CST(2)*X22(2) + SNT*X12(1)
      ELSE
C
C        Case op(M) = M.
C
C        Find  X = That*( v11*s11hat*inv( v11 ) ). ( Defer the scaling.)
C
         X11(1) =  CST(1)*E1 + CST(2)*E2
         X11(2) =  CST(1)*E2 - CST(2)*E1
         X21(1) = -SNT*E1
         X21(2) = -SNT*E2
         X12(1) =  SGN*(  CST(1)*GAMMA(1) - CST(2)*GAMMA(2) ) + SNT*E1
         X12(2) =  SGN*( -CST(1)*GAMMA(2) - CST(2)*GAMMA(1) ) - SNT*E2
         X22(1) =  CST(1)*E1 + CST(2)*E2 - SGN*SNT*GAMMA(1)
         X22(2) = -CST(1)*E2 + CST(2)*E1 + SGN*SNT*GAMMA(2)
C
C        Now find  B = X*conjg( That' ). ( Include the scaling here.)
C
         S(1,1) = CST(1)*X11(1) - CST(2)*X11(2) + SNT*X12(1)
         TEMPR  = CST(1)*X21(1) - CST(2)*X21(2) + SNT*X22(1)
         TEMPI  = CST(1)*X21(2) + CST(2)*X21(1) + SNT*X22(2)
         S(2,1) = DT(1)*TEMPR   - DT(2)*TEMPI
         TEMPR  = CST(1)*X12(1) + CST(2)*X12(2) - SNT*X11(1)
         TEMPI  = CST(1)*X12(2) - CST(2)*X12(1) - SNT*X11(2)
         S(1,2) = DT(1)*TEMPR   + DT(2)*TEMPI
         S(2,2) = CST(1)*X22(1) + CST(2)*X22(2) - SNT*X21(1)
C
C        Form  X = Phat*( p11*inv( v11 ) ).
C
         TEMPR  =  DP(1)*ETA
         TEMPI  = -DP(2)*ETA
         X11(1) =  CSP(1)*ALPHA
         X11(2) =  CSP(2)*ALPHA
         X21(1) =  SNP*ALPHA
         X12(1) =  CSP(1)*DELTA(1) + CSP(2)*DELTA(2) - SNP*TEMPR
         X12(2) = -CSP(1)*DELTA(2) + CSP(2)*DELTA(1) - SNP*TEMPI
         X22(1) =  CSP(1)*TEMPR + CSP(2)*TEMPI + SNP*DELTA(1)
         X22(2) =  CSP(1)*TEMPI - CSP(2)*TEMPR - SNP*DELTA(2)
C
C        Finally form  A = X*conjg( That' ).
C
         A(1,1) = CST(1)*X11(1) - CST(2)*X11(2) + SNT*X12(1)
         A(2,1) = ZERO
         A(1,2) = CST(1)*X12(1) + CST(2)*X12(2) - SNT*X11(1)
         TEMPR  = CST(1)*X22(1) + CST(2)*X22(2) - SNT*X21(1)
         TEMPI  = CST(1)*X22(2) - CST(2)*X22(1)
         A(2,2) = DT(1)*TEMPR   + DT(2)*TEMPI
      END IF
C
      IF( SCALE.NE.ONE ) THEN
         A(1,1) = SCALE*A(1,1)
         A(1,2) = SCALE*A(1,2)
         A(2,2) = SCALE*A(2,2)
      END IF
C
      RETURN
C *** Last line of SB03OY ***
      END