summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/sb03or.f
blob: 3c4640c5f9e5ad3c9f0c4c593aa60b10cdbe51cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      SUBROUTINE SB03OR( DISCR, LTRANS, N, M, S, LDS, A, LDA, C, LDC,
     $                   SCALE, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To compute the solution of the Sylvester equations
C
C        op(S)'*X + X*op(A) = scale*C, if DISCR = .FALSE.  or
C
C        op(S)'*X*op(A) - X = scale*C, if DISCR = .TRUE.
C
C     where op(K) = K or K' (i.e., the transpose of the matrix K), S is
C     an N-by-N block upper triangular matrix with one-by-one and
C     two-by-two blocks on the diagonal, A is an M-by-M matrix (M = 1 or
C     M = 2), X and C are each N-by-M matrices, and scale is an output
C     scale factor, set less than or equal to 1 to avoid overflow in X.
C     The solution X is overwritten on C.
C
C     SB03OR  is a service routine for the Lyapunov solver  SB03OT.
C
C     ARGUMENTS 
C
C     Mode Parameters
C
C     DISCR   LOGICAL
C             Specifies the equation to be solved:
C             = .FALSE.:  op(S)'*X + X*op(A) = scale*C;
C             = .TRUE. :  op(S)'*X*op(A) - X = scale*C.
C
C     LTRANS  LOGICAL
C             Specifies the form of op(K) to be used, as follows:
C             = .FALSE.:  op(K) = K    (No transpose);
C             = .TRUE. :  op(K) = K**T (Transpose).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix  S  and also the number of rows of
C             matrices  X and C.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix  A  and also the number of columns
C             of matrices  X and C.  M = 1 or M = 2.
C
C     S       (input) DOUBLE PRECISION array, dimension (LDS,N)
C             The leading  N-by-N  upper Hessenberg part of the array  S
C             must contain the block upper triangular matrix. The
C             elements below the upper Hessenberg part of the array  S
C             are not referenced.  The array  S  must not contain
C             diagonal blocks larger than two-by-two and the two-by-two
C             blocks must only correspond to complex conjugate pairs of
C             eigenvalues, not to real eigenvalues.
C
C     LDS     INTEGER
C             The leading dimension of array S.  LDS >= MAX(1,N).
C
C     A       (input) DOUBLE PRECISION array, dimension (LDS,M)
C             The leading  M-by-M  part of this array must contain a
C             given matrix, where M = 1 or M = 2.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= M.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,M)
C             On entry, C must contain an N-by-M matrix, where M = 1 or
C             M = 2.
C             On exit, C contains the N-by-M matrix X, the solution of
C             the Sylvester equation.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor, scale, set less than or equal to 1 to
C             prevent the solution overflowing.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  if DISCR = .FALSE., and S and -A have common
C                   eigenvalues, or if DISCR = .TRUE., and S and A have
C                   eigenvalues whose product is equal to unity;
C                   a solution has been computed using slightly
C                   perturbed values.
C
C     METHOD
C
C     The LAPACK scheme for solving Sylvester equations is adapted.
C
C     REFERENCES
C
C     [1] Hammarling, S.J.
C         Numerical solution of the stable, non-negative definite
C         Lyapunov equation.
C         IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C     NUMERICAL ASPECTS
C                               2
C     The algorithm requires 0(N M) operations and is backward stable.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C     Supersedes Release 2.0 routines SB03CW and SB03CX by
C     Sven Hammarling, NAG Ltd, United Kingdom, Oct. 1986.
C     Partly based on routine PLYAP4 by A. Varga, University of Bochum,
C     May 1992.
C
C     REVISIONS
C
C     December 1997, April 1998, May 1999, April 2000.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     .. Scalar Arguments ..
      LOGICAL            DISCR, LTRANS
      INTEGER            INFO, LDA, LDS, LDC, M, N
      DOUBLE PRECISION   SCALE
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), S( LDS, * )
C     .. Local Scalars ..
      LOGICAL            TBYT
      INTEGER            DL, INFOM, ISGN, J, L, L1, L2, L2P1, LNEXT
      DOUBLE PRECISION   G11, G12, G21, G22, SCALOC, XNORM
C     ..
C     .. Local Arrays ..
      DOUBLE PRECISION   AT( 2, 2 ), VEC( 2, 2 ), X( 2, 2 )
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DDOT
      EXTERNAL           DDOT
C     ..
C     .. External Subroutines ..
      EXTERNAL           DLASY2, DSCAL, SB04PX, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
C     ..
C     .. Executable Statements ..
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( .NOT.( M.EQ.1 .OR. M.EQ.2 ) ) THEN
         INFO = -4
      ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.M ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
C
      IF ( INFO.NE.0 ) THEN      
C
C        Error return.
C
         CALL XERBLA( 'SB03OR', -INFO )
         RETURN
      END IF
C
      SCALE = ONE
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
C
      ISGN = 1
      TBYT = M.EQ.2
      INFOM = 0
C
C     Construct A'.
C
      AT(1,1) = A(1,1)
      IF ( TBYT ) THEN
         AT(1,2) = A(2,1)
         AT(2,1) = A(1,2)
         AT(2,2) = A(2,2)
      END IF
C
      IF ( LTRANS ) THEN
C
C        Start row loop (index = L).
C        L1 (L2) : row index of the first (last) row of X(L).
C
         LNEXT = N
C
         DO 20 L = N, 1, -1
            IF( L.GT.LNEXT )
     $         GO TO 20
            L1 = L
            L2 = L
            IF( L.GT.1 ) THEN
               IF( S( L, L-1 ).NE.ZERO )
     $            L1 = L1 - 1
               LNEXT = L1 - 1
            END IF
            DL = L2 - L1 + 1
            L2P1 = MIN( L2+1, N )
C
            IF ( DISCR ) THEN
C
C              Solve  S*X*A' - X = scale*C.
C
C              The L-th block of X is determined from
C
C              S(L,L)*X(L)*A' - X(L) = C(L) - R(L),
C
C              where
C
C                      N
C              R(L) = SUM [S(L,J)*X(J)] * A' .
C                    J=L+1
C
               G11 = -DDOT( N-L2, S( L1, L2P1 ), LDS, C( L2P1, 1 ), 1 )
               IF ( TBYT ) THEN
                  G12 = -DDOT( N-L2, S( L1, L2P1 ), LDS, C( L2P1, 2 ),
     $                         1 )
                  VEC( 1, 1 ) = C( L1, 1 ) + G11*AT(1,1) + G12*AT(2,1)
                  VEC( 1, 2 ) = C( L1, 2 ) + G11*AT(1,2) + G12*AT(2,2)
               ELSE
                  VEC (1, 1 ) = C( L1, 1 ) + G11*AT(1,1)
               END IF
               IF ( DL.NE.1 ) THEN
                  G21 = -DDOT( N-L2, S( L2, L2P1 ), LDS, C( L2P1, 1 ),
     $                         1 )
                  IF ( TBYT ) THEN
                     G22 = -DDOT( N-L2, S( L2, L2P1 ), LDS,
     $                            C( L2P1, 2 ), 1 )
                     VEC( 2, 1 ) = C( L2, 1 ) + G21*AT(1,1) +
     $                                          G22*AT(2,1)
                     VEC( 2, 2 ) = C( L2, 2 ) + G21*AT(1,2) +
     $                                          G22*AT(2,2)
                  ELSE
                     VEC( 2, 1 ) = C( L2, 1 ) + G21*AT(1,1)
                  END IF
               END IF
               CALL SB04PX( .FALSE., .FALSE., -ISGN, DL, M, S( L1, L1 ),
     $                      LDS, AT, 2, VEC, 2, SCALOC, X, 2, XNORM,
     $                      INFO )
            ELSE
C
C              Solve  S*X + X*A' = scale*C.
C
C              The L-th block of X is determined from
C
C              S(L,L)*X(L) + X(L)*A' = C(L) - R(L),
C
C              where
C                       N
C              R(L) =  SUM S(L,J)*X(J) .
C                     J=L+1
C
               VEC( 1, 1 ) = C( L1, 1 ) -
     $                       DDOT( N-L2, S( L1, L2P1 ), LDS,
     $                             C( L2P1, 1 ), 1 )
               IF ( TBYT )
     $            VEC( 1, 2 ) = C( L1, 2 ) -
     $                          DDOT( N-L2, S( L1, L2P1 ), LDS,
     $                                C( L2P1, 2 ), 1 )
C
               IF ( DL.NE.1 ) THEN
                  VEC( 2, 1 ) = C( L2, 1 ) -
     $                          DDOT( N-L2, S( L2, L2P1 ), LDS,
     $                                C( L2P1, 1 ), 1 )
                  IF ( TBYT )
     $               VEC( 2, 2 ) = C( L2, 2 ) -
     $                             DDOT( N-L2, S( L2, L2P1 ), LDS,
     $                                   C( L2P1, 2 ), 1 )
               END IF
               CALL DLASY2( .FALSE., .FALSE., ISGN, DL, M, S( L1, L1 ),
     $                      LDS, AT, 2, VEC, 2, SCALOC, X, 2, XNORM,
     $                      INFO )
            END IF
            INFOM = MAX( INFO, INFOM )
            IF ( SCALOC.NE.ONE ) THEN
C
               DO 10 J = 1, M
                  CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
   10          CONTINUE
C
               SCALE = SCALE*SCALOC
            END IF
            C( L1, 1 ) = X( 1, 1 )
            IF ( TBYT ) C( L1, 2 ) = X( 1, 2 )
            IF ( DL.NE.1 ) THEN
               C( L2, 1 ) = X( 2, 1 )
               IF ( TBYT ) C( L2, 2 ) = X( 2, 2 )
            END IF
   20    CONTINUE
C
      ELSE
C
C        Start row loop (index = L).
C        L1 (L2) : row index of the first (last) row of X(L).
C
         LNEXT = 1
C
         DO 40 L = 1, N
            IF( L.LT.LNEXT )
     $         GO TO 40
            L1 = L
            L2 = L
            IF( L.LT.N ) THEN
               IF( S( L+1, L ).NE.ZERO )
     $            L2 = L2 + 1
               LNEXT = L2 + 1
            END IF
            DL = L2 - L1 + 1
C
            IF ( DISCR ) THEN
C
C              Solve  A'*X'*S - X' = scale*C'.
C
C              The L-th block of X is determined from
C
C              A'*X(L)'*S(L,L) - X(L)' = C(L)' - R(L),
C
C              where
C
C                          L-1
C              R(L) = A' * SUM [X(J)'*S(J,L)] .
C                          J=1
C
               G11 = -DDOT( L1-1, C, 1, S( 1, L1 ), 1 )
               IF ( TBYT ) THEN
                  G21 = -DDOT( L1-1, C( 1, 2 ), 1, S( 1, L1 ), 1 )
                  VEC( 1, 1 ) = C( L1, 1 ) + AT(1,1)*G11 + AT(1,2)*G21
                  VEC( 2, 1 ) = C( L1, 2 ) + AT(2,1)*G11 + AT(2,2)*G21
               ELSE
                  VEC (1, 1 ) = C( L1, 1 ) + AT(1,1)*G11
               END IF
               IF ( DL .NE. 1 ) THEN
                  G12 = -DDOT( L1-1, C, 1, S( 1, L2 ), 1 )
                  IF ( TBYT ) THEN
                     G22 = -DDOT( L1-1, C( 1, 2 ), 1, S( 1, L2 ), 1 )
                     VEC( 1, 2 ) = C( L2, 1 ) + AT(1,1)*G12 +
     $                                          AT(1,2)*G22
                     VEC( 2, 2 ) = C( L2, 2 ) + AT(2,1)*G12 +
     $                                          AT(2,2)*G22
                  ELSE
                     VEC( 1, 2 ) = C( L2, 1 ) + AT(1,1)*G12
                  END IF
               END IF
               CALL SB04PX( .FALSE., .FALSE., -ISGN, M, DL, AT, 2,
     $                      S( L1, L1 ), LDS, VEC, 2, SCALOC, X, 2,
     $                      XNORM, INFO )
            ELSE
C
C              Solve  A'*X' + X'*S = scale*C'.
C
C              The L-th block of X is determined from
C
C              A'*X(L)' + X(L)'*S(L,L) = C(L)' - R(L),
C
C              where
C                     L-1
C              R(L) = SUM [X(J)'*S(J,L)].
C                     J=1
C
               VEC( 1, 1 ) = C( L1, 1 ) -
     $                       DDOT( L1-1, C, 1, S( 1, L1 ), 1 )
               IF ( TBYT )
     $            VEC( 2, 1 ) = C( L1, 2 ) -
     $                          DDOT( L1-1, C( 1, 2 ), 1, S( 1, L1 ), 1)
C
               IF ( DL.NE.1 ) THEN
                  VEC( 1, 2 ) = C( L2, 1 ) -
     $                          DDOT( L1-1, C, 1, S( 1, L2 ), 1 )
                  IF ( TBYT )
     $            VEC( 2, 2 ) = C( L2, 2 ) -
     $                          DDOT( L1-1, C( 1, 2 ), 1, S( 1, L2 ), 1)
               END IF
               CALL DLASY2( .FALSE., .FALSE., ISGN, M, DL, AT, 2,
     $                      S( L1, L1 ), LDS, VEC, 2, SCALOC, X, 2,
     $                      XNORM, INFO )
            END IF
            INFOM = MAX( INFO, INFOM )
            IF ( SCALOC.NE.ONE ) THEN
C
               DO 30 J = 1, M
                  CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
   30          CONTINUE
C
               SCALE = SCALE*SCALOC
            END IF
            C( L1, 1 ) = X( 1, 1 )
            IF ( TBYT ) C( L1, 2 ) = X( 2, 1 )
            IF ( DL.NE.1 ) THEN
               C( L2, 1 ) = X( 1, 2 )
               IF ( TBYT ) C( L2, 2 ) = X( 2, 2 )
            END IF
   40    CONTINUE
      END IF
C
      INFO = INFOM
      RETURN
C *** Last line of SB03OR ***
      END