summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/sb03od.f
blob: a37beb70a2eb00e715a0daf9ddec24b628cdf37e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
      SUBROUTINE SB03OD( DICO, FACT, TRANS, N, M, A, LDA, Q, LDQ, B,
     $                   LDB, SCALE, WR, WI, DWORK, LDWORK, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To solve for X = op(U)'*op(U) either the stable non-negative
C     definite continuous-time Lyapunov equation
C                                   2
C        op(A)'*X + X*op(A) = -scale *op(B)'*op(B)                   (1)
C
C     or the convergent non-negative definite discrete-time Lyapunov
C     equation
C                                   2
C        op(A)'*X*op(A) - X = -scale *op(B)'*op(B)                   (2)
C
C     where op(K) = K or K' (i.e., the transpose of the matrix K), A is
C     an N-by-N matrix, op(B) is an M-by-N matrix, U is an upper
C     triangular matrix containing the Cholesky factor of the solution
C     matrix X, X = op(U)'*op(U), and scale is an output scale factor,
C     set less than or equal to 1 to avoid overflow in X. If matrix B
C     has full rank then the solution matrix X will be positive-definite
C     and hence the Cholesky factor U will be nonsingular, but if B is
C     rank deficient then X may be only positive semi-definite and U
C     will be singular.
C
C     In the case of equation (1) the matrix A must be stable (that
C     is, all the eigenvalues of A must have negative real parts),
C     and for equation (2) the matrix A must be convergent (that is,
C     all the eigenvalues of A must lie inside the unit circle).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of Lyapunov equation to be solved as
C             follows:
C             = 'C':  Equation (1), continuous-time case;
C             = 'D':  Equation (2), discrete-time case.
C
C     FACT    CHARACTER*1
C             Specifies whether or not the real Schur factorization
C             of the matrix A is supplied on entry, as follows:
C             = 'F':  On entry, A and Q contain the factors from the
C                     real Schur factorization of the matrix A;
C             = 'N':  The Schur factorization of A will be computed
C                     and the factors will be stored in A and Q.
C
C     TRANS   CHARACTER*1
C             Specifies the form of op(K) to be used, as follows:
C             = 'N':  op(K) = K    (No transpose);
C             = 'T':  op(K) = K**T (Transpose).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A and the number of columns in
C             matrix op(B).  N >= 0.
C
C     M       (input) INTEGER
C             The number of rows in matrix op(B).  M >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A. If FACT = 'F', then A contains
C             an upper quasi-triangular matrix S in Schur canonical
C             form; the elements below the upper Hessenberg part of the
C             array A are not referenced.
C             On exit, the leading N-by-N upper Hessenberg part of this
C             array contains the upper quasi-triangular matrix S in
C             Schur canonical form from the Shur factorization of A.
C             The contents of array A is not modified if FACT = 'F'.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     Q       (input or output) DOUBLE PRECISION array, dimension
C             (LDQ,N)
C             On entry, if FACT = 'F', then the leading N-by-N part of
C             this array must contain the orthogonal matrix Q of the
C             Schur factorization of A.
C             Otherwise, Q need not be set on entry.
C             On exit, the leading N-by-N part of this array contains
C             the orthogonal matrix Q of the Schur factorization of A.
C             The contents of array Q is not modified if FACT = 'F'.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.  LDQ >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             if TRANS = 'N', and dimension (LDB,max(M,N)), if
C             TRANS = 'T'.
C             On entry, if TRANS = 'N', the leading M-by-N part of this
C             array must contain the coefficient matrix B of the
C             equation.
C             On entry, if TRANS = 'T', the leading N-by-M part of this
C             array must contain the coefficient matrix B of the
C             equation.
C             On exit, the leading N-by-N upper triangular part of this
C             array contains the Cholesky factor of the solution matrix
C             X of the problem, X = op(U)'*op(U).
C
C     LDB     INTEGER
C             The leading dimension of array B.
C             LDB >= MAX(1,N,M), if TRANS = 'N';
C             LDB >= MAX(1,N),   if TRANS = 'T'.
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor, scale, set less than or equal to 1 to
C             prevent the solution overflowing.
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             If FACT = 'N', and INFO >= 0 and INFO <= 2, WR and WI
C             contain the real and imaginary parts, respectively, of
C             the eigenvalues of A.
C             If FACT = 'F', WR and WI are not referenced.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, or INFO = 1, DWORK(1) returns the
C             optimal value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK = MAX(1,4*N + MIN(M,N)).
C             For optimum performance LDWORK should sometimes be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the Lyapunov equation is (nearly) singular
C                   (warning indicator);
C                   if DICO = 'C' this means that while the matrix A
C                   (or the factor S) has computed eigenvalues with
C                   negative real parts, it is only just stable in the
C                   sense that small perturbations in A can make one or
C                   more of the eigenvalues have a non-negative real
C                   part;
C                   if DICO = 'D' this means that while the matrix A
C                   (or the factor S) has computed eigenvalues inside
C                   the unit circle, it is nevertheless only just
C                   convergent, in the sense that small perturbations
C                   in A can make one or more of the eigenvalues lie
C                   outside the unit circle;
C                   perturbed values were used to solve the equation;
C             = 2:  if FACT = 'N' and DICO = 'C', but the matrix A is
C                   not stable (that is, one or more of the eigenvalues
C                   of A has a non-negative real part), or DICO = 'D',
C                   but the matrix A is not convergent (that is, one or
C                   more of the eigenvalues of A lies outside the unit
C                   circle); however, A will still have been factored
C                   and the eigenvalues of A returned in WR and WI.
C             = 3:  if FACT = 'F' and DICO = 'C', but the Schur factor S
C                   supplied in the array A is not stable (that is, one
C                   or more of the eigenvalues of S has a non-negative
C                   real part), or DICO = 'D', but the Schur factor S
C                   supplied in the array A is not convergent (that is,
C                   one or more of the eigenvalues of S lies outside the
C                   unit circle);
C             = 4:  if FACT = 'F' and the Schur factor S supplied in
C                   the array A has two or more consecutive non-zero
C                   elements on the first sub-diagonal, so that there is
C                   a block larger than 2-by-2 on the diagonal;
C             = 5:  if FACT = 'F' and the Schur factor S supplied in
C                   the array A has a 2-by-2 diagonal block with real
C                   eigenvalues instead of a complex conjugate pair;
C             = 6:  if FACT = 'N' and the LAPACK Library routine DGEES
C                   has failed to converge. This failure is not likely
C                   to occur. The matrix B will be unaltered but A will
C                   be destroyed.
C
C     METHOD
C
C     The method used by the routine is based on the Bartels and Stewart
C     method [1], except that it finds the upper triangular matrix U
C     directly without first finding X and without the need to form the
C     normal matrix op(B)'*op(B).
C
C     The Schur factorization of a square matrix A is given by
C
C        A = QSQ',
C
C     where Q is orthogonal and S is an N-by-N block upper triangular
C     matrix with 1-by-1 and 2-by-2 blocks on its diagonal (which
C     correspond to the eigenvalues of A). If A has already been
C     factored prior to calling the routine however, then the factors
C     Q and S may be supplied and the initial factorization omitted.
C
C     If TRANS = 'N', the matrix B is factored as (QR factorization)
C            _   _                   _   _  _
C        B = P ( R ),  M >= N,   B = P ( R  Z ),  M < N,
C              ( 0 )
C           _                                    _
C     where P is an M-by-M orthogonal matrix and R is a square upper
C                                         _   _      _     _  _
C     triangular matrix. Then, the matrix B = RQ, or B = ( R  Z )Q (if
C     M < N) is factored as
C        _                       _
C        B = P ( R ),  M >= N,   B = P ( R  Z ),  M < N.
C
C     If TRANS = 'T', the matrix B is factored as (RQ factorization)
C                                         _
C                 _   _                 ( Z ) _
C        B = ( 0  R ) P,  M >= N,   B = ( _ ) P,  M < N,
C                                       ( R )
C           _                                    _
C     where P is an M-by-M orthogonal matrix and R is a square upper
C                                         _     _     _       _   _
C     triangular matrix. Then, the matrix B = Q'R, or B = Q'( Z'  R' )'
C     (if M < N) is factored as
C        _                       _
C        B = ( R ) P,  M >= N,   B = ( Z ) P,  M < N.
C                                    ( R )
C
C     These factorizations are utilised to either transform the
C     continuous-time Lyapunov equation to the canonical form
C                                                        2
C       op(S)'*op(V)'*op(V) + op(V)'*op(V)*op(S) = -scale *op(F)'*op(F),
C
C     or the discrete-time Lyapunov equation to the canonical form
C                                                        2
C       op(S)'*op(V)'*op(V)*op(S) - op(V)'*op(V) = -scale *op(F)'*op(F),
C
C     where V and F are upper triangular, and
C
C        F = R,  M >= N,   F = ( R  Z ),  M < N, if TRANS = 'N';
C                              ( 0  0 )
C
C        F = R,  M >= N,   F = ( 0  Z ),  M < N, if TRANS = 'T'.
C                              ( 0  R )
C
C     The transformed equation is then solved for V, from which U is
C     obtained via the QR factorization of V*Q', if TRANS = 'N', or
C     via the RQ factorization of Q*V, if TRANS = 'T'.
C
C     REFERENCES
C
C     [1] Bartels, R.H. and Stewart, G.W.
C         Solution of the matrix equation  A'X + XB = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [2] Hammarling, S.J.
C         Numerical solution of the stable, non-negative definite
C         Lyapunov equation.
C         IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     FURTHER COMMENTS
C
C     The Lyapunov equation may be very ill-conditioned. In particular,
C     if A is only just stable (or convergent) then the Lyapunov
C     equation will be ill-conditioned.  A symptom of ill-conditioning
C     is "large" elements in U relative to those of A and B, or a
C     "small" value for scale. A condition estimate can be computed
C     using SLICOT Library routine SB03MD.
C
C     SB03OD routine can be also used for solving "unstable" Lyapunov
C     equations, i.e., when matrix A has all eigenvalues with positive
C     real parts, if DICO = 'C', or with moduli greater than one,
C     if DICO = 'D'. Specifically, one may solve for X = op(U)'*op(U)
C     either the continuous-time Lyapunov equation
C                                  2
C        op(A)'*X + X*op(A) = scale *op(B)'*op(B),                   (3)
C
C     or the discrete-time Lyapunov equation
C                                  2
C        op(A)'*X*op(A) - X = scale *op(B)'*op(B),                   (4)
C
C     provided, for equation (3), the given matrix A is replaced by -A,
C     or, for equation (4), the given matrices A and B are replaced by
C     inv(A) and B*inv(A), if TRANS = 'N' (or inv(A)*B, if TRANS = 'T'),
C     respectively. Although the inversion generally can rise numerical
C     problems, in case of equation (4) it is expected that the matrix A
C     is enough well-conditioned, having only eigenvalues with moduli 
C     greater than 1. However, if A is ill-conditioned, it could be
C     preferable to use the more general SLICOT Lyapunov solver SB03MD.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB03CD by Sven Hammarling,
C     NAG Ltd, United Kingdom.
C
C     REVISIONS
C
C     Dec. 1997, April 1998, May 1998, May 1999.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, FACT, TRANS
      INTEGER           INFO, LDA, LDB, LDQ, LDWORK, M, N
      DOUBLE PRECISION  SCALE
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), Q(LDQ,*), WI(*), 
     $                  WR(*)
C     .. Local Scalars ..
      LOGICAL           CONT, LTRANS, NOFACT
      INTEGER           I, IFAIL, INFORM, ITAU, J, JWORK, K, L, MINMN,
     $                  NE, SDIM, WRKOPT
      DOUBLE PRECISION  EMAX, TEMP
C     .. Local Arrays ..
      LOGICAL           BWORK(1)
C     .. External Functions ..
      LOGICAL           LSAME, SELECT1
      DOUBLE PRECISION  DLAPY2
      EXTERNAL          DLAPY2, LSAME, SELECT1
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEES, DGEMM, DGEMV, DGEQRF, DGERQF,
     $                  DLACPY, DTRMM, SB03OU, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      CONT   = LSAME( DICO,  'C' )
      NOFACT = LSAME( FACT,  'N' )
      LTRANS = LSAME( TRANS, 'T' )
      MINMN  = MIN( M, N )
C
      INFO = 0
      IF( .NOT.CONT .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.LTRANS .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( ( LDB.LT.MAX( 1, N ) )  .OR. 
     $         ( LDB.LT.MAX( 1, N, M ) .AND. .NOT.LTRANS ) ) THEN
         INFO = -11
      ELSE IF( LDWORK.LT.MAX( 1, 4*N + MINMN ) ) THEN
         INFO = -16
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB03OD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MINMN.EQ.0 ) THEN
         SCALE = ONE
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Start the solution.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      IF ( NOFACT ) THEN
C
C        Find the Schur factorization of A,   A = Q*S*Q'.
C        Workspace:  need   3*N;
C                    prefer larger.
C
         CALL DGEES( 'Vectors', 'Not ordered', SELECT1, N, A, LDA, SDIM,
     $               WR, WI, Q, LDQ, DWORK, LDWORK, BWORK, INFORM )
         IF ( INFORM.NE.0 ) THEN
            INFO = 6
            RETURN
         END IF
         WRKOPT = DWORK(1)
C
C        Check the eigenvalues for stability.
C
         IF ( CONT ) THEN
            EMAX = WR(1)
C
            DO 20 J = 2, N
               IF ( WR(J).GT.EMAX )
     $            EMAX = WR(J)
   20       CONTINUE
C
         ELSE
            EMAX = DLAPY2( WR(1), WI(1) )
C
            DO 40 J = 2, N
               TEMP = DLAPY2( WR(J), WI(J) )
               IF ( TEMP.GT.EMAX )
     $            EMAX = TEMP
   40       CONTINUE
C
         END IF
C
         IF (    ( CONT ) .AND. ( EMAX.GE.ZERO ) .OR.
     $      ( .NOT.CONT ) .AND. ( EMAX.GE.ONE  ) ) THEN
            INFO = 2
            RETURN
         END IF
      END IF
C
C     Perform the QR or RQ factorization of B,
C            _   _           _   _  _
C        B = P ( R ), or B = P ( R  Z ), if TRANS = 'N', or
C              ( 0 )
C                                 _
C                 _   _         ( Z ) _
C        B = ( 0  R ) P, or B = ( _ ) P, if TRANS = 'T'.
C                               ( R )
C     Workspace:  need   MIN(M,N) + N;
C                 prefer MIN(M,N) + N*NB.
C
      ITAU  = 1
      JWORK = ITAU + MINMN
      IF ( LTRANS ) THEN
         CALL DGERQF( N, M, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
         JWORK = ITAU
C
C        Form in B
C        _      _              _         _   _                    _
C        B := Q'R,   m >= n,   B := Q'*( Z'  R' )',   m < n, with B an
C        n-by-min(m,n) matrix.
C        Use a BLAS 3 operation if enough workspace, and BLAS 2,
C                   _
C        otherwise: B is formed column by column.
C
         IF ( LDWORK.GE.JWORK+MINMN*N-1 ) THEN
            K = JWORK
C
            DO 60 I = 1, MINMN
               CALL DCOPY( N, Q(N-MINMN+I,1), LDQ, DWORK(K), 1 )
               K = K + N
   60       CONTINUE
C
            CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Non-unit',
     $                  N, MINMN, ONE, B(N-MINMN+1,M-MINMN+1), LDB,
     $                  DWORK(JWORK), N )
            IF ( M.LT.N )
     $         CALL DGEMM( 'Transpose', 'No transpose', N, M, N-M,
     $                     ONE, Q, LDQ, B, LDB, ONE, DWORK(JWORK), N )
            CALL DLACPY( 'Full', N, MINMN, DWORK(JWORK), N, B, LDB )
         ELSE
            NE = N - MINMN
C
            DO 80 J = 1, MINMN
               NE = NE + 1
               CALL DCOPY( NE, B(1,M-MINMN+J), 1, DWORK(JWORK), 1 )
               CALL DGEMV( 'Transpose', NE, N, ONE, Q, LDQ,
     $                     DWORK(JWORK), 1, ZERO, B(1,J), 1 )
   80       CONTINUE
C
         END IF
      ELSE
         CALL DGEQRF( M, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
         JWORK = ITAU
C
C        Form in B
C        _    _               _      _  _                    _
C        B := RQ,   m >= n,   B := ( R  Z )*Q,   m < n, with B an
C        min(m,n)-by-n matrix.
C        Use a BLAS 3 operation if enough workspace, and BLAS 2,
C                   _
C        otherwise: B is formed row by row.
C
         IF ( LDWORK.GE.JWORK+MINMN*N-1 ) THEN
            CALL DLACPY( 'Full', MINMN, N, Q, LDQ, DWORK(JWORK), MINMN )
            CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit',
     $                  MINMN, N, ONE, B, LDB, DWORK(JWORK), MINMN )
            IF ( M.LT.N )
     $         CALL DGEMM( 'No transpose', 'No transpose', M, N, N-M,
     $                     ONE, B(1,M+1), LDB, Q(M+1,1), LDQ, ONE,
     $                     DWORK(JWORK), MINMN )
            CALL DLACPY( 'Full', MINMN, N, DWORK(JWORK), MINMN, B, LDB )
         ELSE
            NE = MINMN + MAX( 0, N-M )
C
            DO 100 J = 1, MINMN
               CALL DCOPY( NE, B(J,J), LDB, DWORK(JWORK), 1 )
               CALL DGEMV( 'Transpose', NE, N, ONE, Q(J,1), LDQ,
     $                     DWORK(JWORK), 1, ZERO, B(J,1), LDB )
               NE = NE - 1
  100       CONTINUE
C
         END IF
      END IF
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1, MINMN*N )
      JWORK  = ITAU + MINMN
C
C     Solve for U the transformed Lyapunov equation
C                                                      2    _      _
C     op(S)'*op(U)'*op(U) + op(U)'*op(U)*op(S) = -scale *op(B)'*op(B),
C
C     or
C                                                      2    _      _
C     op(S)'*op(U)'*op(U)*op(S) - op(U)'*op(U) = -scale *op(B)'*op(B)
C
C     Workspace:  need   MIN(M,N) + 4*N;
C                 prefer larger.
C
      CALL SB03OU( .NOT.CONT, LTRANS, N, MINMN, A, LDA, B, LDB,
     $             DWORK(ITAU), B, LDB, SCALE, DWORK(JWORK),
     $             LDWORK-JWORK+1, INFO )
      IF ( INFO.GT.1 ) THEN
         INFO = INFO + 1
         RETURN
      END IF
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
      JWORK  = ITAU
C
C     Form   U :=  U*Q' or U := Q*U in the array B.
C     Use a BLAS 3 operation if enough workspace, and BLAS 2, otherwise.
C     Workspace:  need   N;
C                 prefer N*N;
C
      IF ( LDWORK.GE.JWORK+N*N-1 ) THEN
         IF ( LTRANS ) THEN
            CALL DLACPY( 'Full', N, N, Q, LDQ, DWORK(JWORK), N )
            CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Non-unit', N,
     $                  N, ONE, B, LDB, DWORK(JWORK), N )
         ELSE
            K = JWORK
C
            DO 120 I = 1, N
               CALL DCOPY( N, Q(1,I), 1, DWORK(K), N )
               K = K + 1
  120       CONTINUE
C
            CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
     $                  N, ONE, B, LDB, DWORK(JWORK), N )
         END IF
         CALL DLACPY( 'Full', N, N, DWORK(JWORK), N, B, LDB )
         WRKOPT = MAX( WRKOPT, JWORK + N*N - 1 )
      ELSE
         IF ( LTRANS ) THEN
C
C           U is formed column by column ( U := Q*U ).
C
            DO 140 I = 1, N
               CALL DCOPY( I, B(1,I), 1, DWORK(JWORK), 1 )
               CALL DGEMV( 'No transpose', N, I, ONE, Q, LDQ,
     $                     DWORK(JWORK), 1, ZERO, B(1,I), 1 )
  140       CONTINUE
         ELSE
C
C           U is formed row by row ( U' := Q*U' ).
C
            DO 160 I = 1, N
               CALL DCOPY( N-I+1, B(I,I), LDB, DWORK(JWORK), 1 )
               CALL DGEMV( 'No transpose', N, N-I+1, ONE, Q(1,I), LDQ,
     $                     DWORK(JWORK), 1, ZERO, B(I,1), LDB )
  160       CONTINUE
         END IF
      END IF
C
C     Lastly find the QR or RQ factorization of U, overwriting on B,
C     to give the required Cholesky factor.
C     Workspace:  need   2*N;
C                 prefer N + N*NB;
C
      JWORK = ITAU + N
      IF ( LTRANS ) THEN
         CALL DGERQF( N, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
      ELSE
         CALL DGEQRF( N, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
      END IF
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C     Make the diagonal elements of U non-negative.
C
      IF ( LTRANS ) THEN
C
         DO 200 J = 1, N
            IF ( B(J,J).LT.ZERO ) THEN
C
               DO 180 I = 1, J
                  B(I,J) = -B(I,J)
  180          CONTINUE
C
            END IF
  200    CONTINUE
C
      ELSE
         K = JWORK
C
         DO 240 J = 1, N
            DWORK(K) = B(J,J)
            L = JWORK
C
            DO 220 I = 1, J
               IF ( DWORK(L).LT.ZERO ) B(I,J) = -B(I,J)
               L = L + 1
  220       CONTINUE
C
            K = K + 1
  240    CONTINUE
      END IF
C
C     Set the optimal workspace.
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of SB03OD ***
      END