1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
|
SUBROUTINE SB03MX( TRANA, N, A, LDA, C, LDC, SCALE, DWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To solve the real discrete Lyapunov matrix equation
C
C op(A)'*X*op(A) - X = scale*C
C
C where op(A) = A or A' (A**T), A is upper quasi-triangular and C is
C symmetric (C = C'). (A' denotes the transpose of the matrix A.)
C A is N-by-N, the right hand side C and the solution X are N-by-N,
C and scale is an output scale factor, set less than or equal to 1
C to avoid overflow in X. The solution matrix X is overwritten
C onto C.
C
C A must be in Schur canonical form (as returned by LAPACK routines
C DGEES or DHSEQR), that is, block upper triangular with 1-by-1 and
C 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its
C diagonal elements equal and its off-diagonal elements of opposite
C sign.
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, and C. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C upper quasi-triangular matrix A, in Schur canonical form.
C The part of A below the first sub-diagonal is not
C referenced.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading N-by-N part of this array must
C contain the symmetric matrix C.
C On exit, if INFO >= 0, the leading N-by-N part of this
C array contains the symmetric solution matrix X.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if A has almost reciprocal eigenvalues; perturbed
C values were used to solve the equation (but the
C matrix A is unchanged).
C
C METHOD
C
C A discrete-time version of the Bartels-Stewart algorithm is used.
C A set of equivalent linear algebraic systems of equations of order
C at most four are formed and solved using Gaussian elimination with
C complete pivoting.
C
C REFERENCES
C
C [1] Barraud, A.Y. T
C A numerical algorithm to solve A XA - X = Q.
C IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
C
C [2] Bartels, R.H. and Stewart, G.W. T
C Solution of the matrix equation A X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C Supersedes Release 2.0 routine SB03AZ by Control Systems Research
C Group, Kingston Polytechnic, United Kingdom, October 1982.
C Based on DTRLPD by P. Petkov, Tech. University of Sofia, September
C 1993.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999.
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C KEYWORDS
C
C Discrete-time system, Lyapunov equation, matrix algebra, real
C Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER TRANA
INTEGER INFO, LDA, LDC, N
DOUBLE PRECISION SCALE
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), DWORK( * )
C ..
C .. Local Scalars ..
LOGICAL NOTRNA, LUPPER
INTEGER IERR, J, K, K1, K2, KNEXT, L, L1, L2, LNEXT,
$ MINK1N, MINK2N, MINL1N, MINL2N, NP1
DOUBLE PRECISION A11, BIGNUM, DA11, DB, EPS, P11, P12, P21, P22,
$ SCALOC, SMIN, SMLNUM, XNORM
C ..
C .. Local Arrays ..
DOUBLE PRECISION VEC( 2, 2 ), X( 2, 2 )
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT, DLAMCH, DLANHS
EXTERNAL DDOT, DLAMCH, DLANHS, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DLABAD, DLALN2, DSCAL, DSYMV, SB03MV, SB04PX,
$ XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
NOTRNA = LSAME( TRANA, 'N' )
LUPPER = .TRUE.
C
INFO = 0
IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'T' ) .AND.
$ .NOT.LSAME( TRANA, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB03MX', -INFO )
RETURN
END IF
C
SCALE = ONE
C
C Quick return if possible.
C
IF( N.EQ.0 )
$ RETURN
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM*DBLE( N*N ) / EPS
BIGNUM = ONE / SMLNUM
C
SMIN = MAX( SMLNUM, EPS*DLANHS( 'Max', N, A, LDA, DWORK ) )
NP1 = N + 1
C
IF( NOTRNA ) THEN
C
C Solve A'*X*A - X = scale*C.
C
C The (K,L)th block of X is determined starting from
C upper-left corner column by column by
C
C A(K,K)'*X(K,L)*A(L,L) - X(K,L) = C(K,L) - R(K,L),
C
C where
C K L-1
C R(K,L) = SUM {A(I,K)'*SUM [X(I,J)*A(J,L)]} +
C I=1 J=1
C
C K-1
C {SUM [A(I,K)'*X(I,L)]}*A(L,L).
C I=1
C
C Start column loop (index = L).
C L1 (L2): column index of the first (last) row of X(K,L).
C
LNEXT = 1
C
DO 60 L = 1, N
IF( L.LT.LNEXT )
$ GO TO 60
L1 = L
L2 = L
IF( L.LT.N ) THEN
IF( A( L+1, L ).NE.ZERO )
$ L2 = L2 + 1
LNEXT = L2 + 1
END IF
C
C Start row loop (index = K).
C K1 (K2): row index of the first (last) row of X(K,L).
C
DWORK( L1 ) = ZERO
DWORK( N+L1 ) = ZERO
CALL DSYMV( 'Lower', L1-1, ONE, C, LDC, A( 1, L1 ), 1, ZERO,
$ DWORK, 1 )
CALL DSYMV( 'Lower', L1-1, ONE, C, LDC, A( 1, L2 ), 1, ZERO,
$ DWORK( NP1 ), 1 )
C
KNEXT = L
C
DO 50 K = L, N
IF( K.LT.KNEXT )
$ GO TO 50
K1 = K
K2 = K
IF( K.LT.N ) THEN
IF( A( K+1, K ).NE.ZERO )
$ K2 = K2 + 1
KNEXT = K2 + 1
END IF
C
IF( L1.EQ.L2 .AND. K1.EQ.K2 ) THEN
DWORK( K1 ) = DDOT( L1-1, C( K1, 1 ), LDC, A( 1, L1 ),
$ 1 )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( K1, A( 1, K1 ), 1, DWORK, 1 ) + A( L1, L1 )
$ *DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 ) )
SCALOC = ONE
C
A11 = A( K1, K1 )*A( L1, L1 ) - ONE
DA11 = ABS( A11 )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( VEC( 1, 1 ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X( 1, 1 ) = ( VEC( 1, 1 )*SCALOC ) / A11
C
IF( SCALOC.NE.ONE ) THEN
C
DO 10 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
10 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
IF( K1.NE.L1 ) THEN
C( L1, K1 ) = X( 1, 1 )
END IF
C
ELSE IF( L1.EQ.L2 .AND. K1.NE.K2 ) THEN
C
DWORK( K1 ) = DDOT( L1-1, C( K1, 1 ), LDC, A( 1, L1 ),
$ 1 )
DWORK( K2 ) = DDOT( L1-1, C( K2, 1 ), LDC, A( 1, L1 ),
$ 1 )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( K2, A( 1, K1 ), 1, DWORK, 1 ) + A( L1, L1 )
$ *DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 ) )
C
VEC( 2, 1 ) = C( K2, L1 ) -
$ ( DDOT( K2, A( 1, K2 ), 1, DWORK, 1 ) + A( L1, L1 )
$ *DDOT( K1-1, A( 1, K2 ), 1, C( 1, L1 ), 1 ) )
C
CALL DLALN2( .TRUE., 2, 1, SMIN, A( L1, L1 ),
$ A( K1, K1 ), LDA, ONE, ONE, VEC, 2, ONE,
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
C
IF( SCALOC.NE.ONE ) THEN
C
DO 20 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
20 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K2, L1 ) = X( 2, 1 )
C( L1, K1 ) = X( 1, 1 )
C( L1, K2 ) = X( 2, 1 )
C
ELSE IF( L1.NE.L2 .AND. K1.EQ.K2 ) THEN
C
DWORK( K1 ) = DDOT( L1-1, C( K1, 1 ), LDC, A( 1, L1 ),
$ 1 )
DWORK( N+K1 ) = DDOT( L1-1, C( K1, 1 ), LDC,
$ A( 1, L2 ), 1 )
P11 = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
P12 = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L2 ), 1 )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( K1, A( 1, K1 ), 1, DWORK, 1 ) +
$ P11*A( L1, L1 ) + P12*A( L2, L1 ) )
C
VEC( 2, 1 ) = C( K1, L2 ) -
$ ( DDOT( K1, A( 1, K1 ), 1, DWORK( NP1 ), 1 ) +
$ P11*A( L1, L2 ) + P12*A( L2, L2 ) )
C
CALL DLALN2( .TRUE., 2, 1, SMIN, A( K1, K1 ),
$ A( L1, L1 ), LDA, ONE, ONE, VEC, 2, ONE,
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
C
IF( SCALOC.NE.ONE ) THEN
C
DO 30 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
30 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
CALL DSCAL( N, SCALOC, DWORK( NP1 ), 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 2, 1 )
C( L1, K1 ) = X( 1, 1 )
C( L2, K1 ) = X( 2, 1 )
C
ELSE IF( L1.NE.L2 .AND. K1.NE.K2 ) THEN
C
DWORK( K1 ) = DDOT( L1-1, C( K1, 1 ), LDC, A( 1, L1 ),
$ 1 )
DWORK( K2 ) = DDOT( L1-1, C( K2, 1 ), LDC, A( 1, L1 ),
$ 1 )
DWORK( N+K1 ) = DDOT( L1-1, C( K1, 1 ), LDC,
$ A( 1, L2 ), 1 )
DWORK( N+K2 ) = DDOT( L1-1, C( K2, 1 ), LDC,
$ A( 1, L2 ), 1 )
P11 = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
P12 = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L2 ), 1 )
P21 = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L1 ), 1 )
P22 = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L2 ), 1 )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( K2, A( 1, K1 ), 1, DWORK, 1 ) +
$ P11*A( L1, L1 ) + P12*A( L2, L1 ) )
C
VEC( 1, 2 ) = C( K1, L2 ) -
$ ( DDOT( K2, A( 1, K1 ), 1, DWORK( NP1 ), 1 ) +
$ P11*A( L1, L2 ) + P12*A( L2, L2 ) )
C
VEC( 2, 1 ) = C( K2, L1 ) -
$ ( DDOT( K2, A( 1, K2 ), 1, DWORK, 1 ) +
$ P21*A( L1, L1 ) + P22*A( L2, L1 ) )
C
VEC( 2, 2 ) = C( K2, L2 ) -
$ ( DDOT( K2, A( 1, K2 ), 1, DWORK( NP1 ), 1 ) +
$ P21*A( L1, L2 ) + P22*A( L2, L2 ) )
C
IF( K1.EQ.L1 ) THEN
CALL SB03MV( .FALSE., LUPPER, A( K1, K1 ), LDA,
$ VEC, 2, SCALOC, X, 2, XNORM, IERR )
IF( LUPPER ) THEN
X( 2, 1 ) = X( 1, 2 )
ELSE
X( 1, 2 ) = X( 2, 1 )
END IF
ELSE
CALL SB04PX( .TRUE., .FALSE., -1, 2, 2,
$ A( K1, K1 ), LDA, A( L1, L1 ), LDA,
$ VEC, 2, SCALOC, X, 2, XNORM, IERR )
END IF
IF( IERR.NE.0 )
$ INFO = 1
C
IF( SCALOC.NE.ONE ) THEN
C
DO 40 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
40 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
CALL DSCAL( N, SCALOC, DWORK( NP1 ), 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 1, 2 )
C( K2, L1 ) = X( 2, 1 )
C( K2, L2 ) = X( 2, 2 )
IF( K1.NE.L1 ) THEN
C( L1, K1 ) = X( 1, 1 )
C( L2, K1 ) = X( 1, 2 )
C( L1, K2 ) = X( 2, 1 )
C( L2, K2 ) = X( 2, 2 )
END IF
END IF
C
50 CONTINUE
C
60 CONTINUE
C
ELSE
C
C Solve A*X*A' - X = scale*C.
C
C The (K,L)th block of X is determined starting from
C bottom-right corner column by column by
C
C A(K,K)*X(K,L)*A(L,L)' - X(K,L) = C(K,L) - R(K,L),
C
C where
C
C N N
C R(K,L) = SUM {A(K,I)* SUM [X(I,J)*A(L,J)']} +
C I=K J=L+1
C
C N
C { SUM [A(K,J)*X(J,L)]}*A(L,L)'
C J=K+1
C
C Start column loop (index = L)
C L1 (L2): column index of the first (last) row of X(K,L)
C
LNEXT = N
C
DO 120 L = N, 1, -1
IF( L.GT.LNEXT )
$ GO TO 120
L1 = L
L2 = L
IF( L.GT.1 ) THEN
IF( A( L, L-1 ).NE.ZERO ) THEN
L1 = L1 - 1
DWORK( L1 ) = ZERO
DWORK( N+L1 ) = ZERO
END IF
LNEXT = L1 - 1
END IF
MINL1N = MIN( L1+1, N )
MINL2N = MIN( L2+1, N )
C
C Start row loop (index = K)
C K1 (K2): row index of the first (last) row of X(K,L)
C
CALL DSYMV( 'Upper', N-L2, ONE, C( L2+1, L2+1 ), LDC,
$ A( L1, L2+1 ), LDA, ZERO, DWORK( L2+1 ), 1 )
CALL DSYMV( 'Upper', N-L2, ONE, C( L2+1, L2+1 ), LDC,
$ A( L2, L2+1 ), LDA, ZERO, DWORK( NP1+L2 ), 1 )
C
KNEXT = L
C
DO 110 K = L, 1, -1
IF( K.GT.KNEXT )
$ GO TO 110
K1 = K
K2 = K
IF( K.GT.1 ) THEN
IF( A( K, K-1 ).NE.ZERO )
$ K1 = K1 - 1
KNEXT = K1 - 1
END IF
MINK1N = MIN( K1+1, N )
MINK2N = MIN( K2+1, N )
C
IF( L1.EQ.L2 .AND. K1.EQ.K2 ) THEN
DWORK( K1 ) = DDOT( N-L1, C( K1, MINL1N ), LDC,
$ A( L1, MINL1N ), LDA )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( N-K1+1, A( K1, K1 ), LDA, DWORK( K1 ), 1 )
$ + DDOT( N-K1, A( K1, MINK1N ), LDA,
$ C( MINK1N, L1 ), 1 )*A( L1, L1 ) )
SCALOC = ONE
C
A11 = A( K1, K1 )*A( L1, L1 ) - ONE
DA11 = ABS( A11 )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( VEC( 1, 1 ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X( 1, 1 ) = ( VEC( 1, 1 )*SCALOC ) / A11
C
IF( SCALOC.NE.ONE ) THEN
C
DO 70 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
70 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
IF( K1.NE.L1 ) THEN
C( L1, K1 ) = X( 1, 1 )
END IF
C
ELSE IF( L1.EQ.L2 .AND. K1.NE.K2 ) THEN
C
DWORK( K1 ) = DDOT( N-L1, C( K1, MINL1N ), LDC,
$ A( L1, MINL1N ), LDA )
DWORK( K2 ) = DDOT( N-L1, C( K2, MINL1N ), LDC,
$ A( L1, MINL1N ), LDA )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( NP1-K1, A( K1, K1 ), LDA, DWORK( K1 ), 1 )
$ + DDOT( N-K2, A( K1, MINK2N ), LDA,
$ C( MINK2N, L1 ), 1 )*A( L1, L1 ) )
C
VEC( 2, 1 ) = C( K2, L1 ) -
$ ( DDOT( NP1-K1, A( K2, K1 ), LDA, DWORK( K1 ), 1 )
$ + DDOT( N-K2, A( K2, MINK2N ), LDA,
$ C( MINK2N, L1 ), 1 )*A( L1, L1 ) )
C
CALL DLALN2( .FALSE., 2, 1, SMIN, A( L1, L1 ),
$ A( K1, K1 ), LDA, ONE, ONE, VEC, 2, ONE,
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
C
IF( SCALOC.NE.ONE ) THEN
C
DO 80 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
80 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K2, L1 ) = X( 2, 1 )
C( L1, K1 ) = X( 1, 1 )
C( L1, K2 ) = X( 2, 1 )
C
ELSE IF( L1.NE.L2 .AND. K1.EQ.K2 ) THEN
C
DWORK( K1 ) = DDOT( N-L2, C( K1, MINL2N ), LDC,
$ A( L1, MINL2N ), LDA )
DWORK( N+K1 ) = DDOT( N-L2, C( K1, MINL2N ), LDC,
$ A( L2, MINL2N ), LDA )
P11 = DDOT( N-K1, A( K1, MINK1N ), LDA,
$ C( MINK1N, L1 ), 1 )
P12 = DDOT( N-K1, A( K1, MINK1N ), LDA,
$ C( MINK1N, L2 ), 1 )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( NP1-K1, A( K1, K1 ), LDA, DWORK( K1 ), 1 )
$ + P11*A( L1, L1 ) + P12*A( L1, L2 ) )
C
VEC( 2, 1 ) = C( K1, L2 ) -
$ ( DDOT( NP1-K1, A( K1, K1 ), LDA, DWORK( N+K1 ), 1)
$ + P11*A( L2, L1 ) + P12*A( L2, L2 ) )
C
CALL DLALN2( .FALSE., 2, 1, SMIN, A( K1, K1 ),
$ A( L1, L1 ), LDA, ONE, ONE, VEC, 2, ONE,
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
C
IF( SCALOC.NE.ONE ) THEN
C
DO 90 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
90 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
CALL DSCAL( N, SCALOC, DWORK( NP1 ), 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 2, 1 )
C( L1, K1 ) = X( 1, 1 )
C( L2, K1 ) = X( 2, 1 )
C
ELSE IF( L1.NE.L2 .AND. K1.NE.K2 ) THEN
C
DWORK( K1 ) = DDOT( N-L2, C( K1, MINL2N ), LDC,
$ A( L1, MINL2N ), LDA )
DWORK( K2 ) = DDOT( N-L2, C( K2, MINL2N ), LDC,
$ A( L1, MINL2N ), LDA )
DWORK( N+K1 ) = DDOT( N-L2, C( K1, MINL2N ), LDC,
$ A( L2, MINL2N ), LDA )
DWORK( N+K2 ) = DDOT( N-L2, C( K2, MINL2N ), LDC,
$ A( L2, MINL2N ), LDA )
P11 = DDOT( N-K2, A( K1, MINK2N ), LDA,
$ C( MINK2N, L1 ), 1 )
P12 = DDOT( N-K2, A( K1, MINK2N ), LDA,
$ C( MINK2N, L2 ), 1 )
P21 = DDOT( N-K2, A( K2, MINK2N ), LDA,
$ C( MINK2N, L1 ), 1 )
P22 = DDOT( N-K2, A( K2, MINK2N ), LDA,
$ C( MINK2N, L2 ), 1 )
C
VEC( 1, 1 ) = C( K1, L1 ) -
$ ( DDOT( NP1-K1, A( K1, K1 ), LDA, DWORK( K1 ), 1 )
$ + P11*A( L1, L1 ) + P12*A( L1, L2 ) )
C
VEC( 1, 2 ) = C( K1, L2 ) -
$ ( DDOT( NP1-K1, A( K1, K1 ), LDA, DWORK( N+K1 ),
$ 1) + P11*A( L2, L1 ) + P12*A( L2, L2 ) )
C
VEC( 2, 1 ) = C( K2, L1 ) -
$ ( DDOT( NP1-K1, A( K2, K1 ), LDA, DWORK( K1 ),
$ 1) + P21*A( L1, L1 ) + P22*A( L1, L2 ) )
C
VEC( 2, 2 ) = C( K2, L2 ) -
$ ( DDOT( NP1-K1, A( K2, K1 ), LDA, DWORK( N+K1 ), 1)
$ + P21*A( L2, L1 ) + P22*A( L2, L2 ) )
C
IF( K1.EQ.L1 ) THEN
CALL SB03MV( .TRUE., LUPPER, A( K1, K1 ), LDA, VEC,
$ 2, SCALOC, X, 2, XNORM, IERR )
IF( LUPPER ) THEN
X( 2, 1 ) = X( 1, 2 )
ELSE
X( 1, 2 ) = X( 2, 1 )
END IF
ELSE
CALL SB04PX( .FALSE., .TRUE., -1, 2, 2,
$ A( K1, K1 ), LDA, A( L1, L1 ), LDA,
$ VEC, 2, SCALOC, X, 2, XNORM, IERR )
END IF
IF( IERR.NE.0 )
$ INFO = 1
C
IF( SCALOC.NE.ONE ) THEN
C
DO 100 J = 1, N
CALL DSCAL( N, SCALOC, C( 1, J ), 1 )
100 CONTINUE
C
CALL DSCAL( N, SCALOC, DWORK, 1 )
CALL DSCAL( N, SCALOC, DWORK( NP1 ), 1 )
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 1, 2 )
C( K2, L1 ) = X( 2, 1 )
C( K2, L2 ) = X( 2, 2 )
IF( K1.NE.L1 ) THEN
C( L1, K1 ) = X( 1, 1 )
C( L2, K1 ) = X( 1, 2 )
C( L1, K2 ) = X( 2, 1 )
C( L2, K2 ) = X( 2, 2 )
END IF
END IF
C
110 CONTINUE
C
120 CONTINUE
C
END IF
C
RETURN
C *** Last line of SB03MX ***
END
|