1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
|
SUBROUTINE SB03MD( DICO, JOB, FACT, TRANA, N, A, LDA, U, LDU, C,
$ LDC, SCALE, SEP, FERR, WR, WI, IWORK, DWORK,
$ LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To solve for X either the real continuous-time Lyapunov equation
C
C op(A)'*X + X*op(A) = scale*C (1)
C
C or the real discrete-time Lyapunov equation
C
C op(A)'*X*op(A) - X = scale*C (2)
C
C and/or estimate an associated condition number, called separation,
C where op(A) = A or A' (A**T) and C is symmetric (C = C').
C (A' denotes the transpose of the matrix A.) A is N-by-N, the right
C hand side C and the solution X are N-by-N, and scale is an output
C scale factor, set less than or equal to 1 to avoid overflow in X.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the equation from which X is to be determined
C as follows:
C = 'C': Equation (1), continuous-time case;
C = 'D': Equation (2), discrete-time case.
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'X': Compute the solution only;
C = 'S': Compute the separation only;
C = 'B': Compute both the solution and the separation.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization
C of the matrix A is supplied on entry, as follows:
C = 'F': On entry, A and U contain the factors from the
C real Schur factorization of the matrix A;
C = 'N': The Schur factorization of A will be computed
C and the factors will be stored in A and U.
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, and C. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A. If FACT = 'F', then A contains
C an upper quasi-triangular matrix in Schur canonical form;
C the elements below the upper Hessenberg part of the
C array A are not referenced.
C On exit, if INFO = 0 or INFO = N+1, the leading N-by-N
C upper Hessenberg part of this array contains the upper
C quasi-triangular matrix in Schur canonical form from the
C Schur factorization of A. The contents of array A is not
C modified if FACT = 'F'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,N)
C If FACT = 'F', then U is an input argument and on entry
C the leading N-by-N part of this array must contain the
C orthogonal matrix U of the real Schur factorization of A.
C If FACT = 'N', then U is an output argument and on exit,
C if INFO = 0 or INFO = N+1, it contains the orthogonal
C N-by-N matrix from the real Schur factorization of A.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry with JOB = 'X' or 'B', the leading N-by-N part of
C this array must contain the symmetric matrix C.
C On exit with JOB = 'X' or 'B', if INFO = 0 or INFO = N+1,
C the leading N-by-N part of C has been overwritten by the
C symmetric solution matrix X.
C If JOB = 'S', C is not referenced.
C
C LDC INTEGER
C The leading dimension of array C.
C LDC >= 1, if JOB = 'S';
C LDC >= MAX(1,N), otherwise.
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'S' or JOB = 'B', and INFO = 0 or INFO = N+1, SEP
C contains the estimated separation of the matrices op(A)
C and -op(A)', if DICO = 'C' or of op(A) and op(A)', if
C DICO = 'D'.
C If JOB = 'X' or N = 0, SEP is not referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'B', and INFO = 0 or INFO = N+1, FERR contains an
C estimated forward error bound for the solution X.
C If XTRUE is the true solution, FERR bounds the relative
C error in the computed solution, measured in the Frobenius
C norm: norm(X - XTRUE)/norm(XTRUE).
C If JOB = 'X' or JOB = 'S', FERR is not referenced.
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C If FACT = 'N', and INFO = 0 or INFO = N+1, WR and WI
C contain the real and imaginary parts, respectively, of
C the eigenvalues of A.
C If FACT = 'F', WR and WI are not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C This array is not referenced if JOB = 'X'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= 1, and
C If JOB = 'X' then
C If FACT = 'F', LDWORK >= N*N, for DICO = 'C';
C LDWORK >= MAX(N*N, 2*N), for DICO = 'D';
C If FACT = 'N', LDWORK >= MAX(N*N, 3*N).
C If JOB = 'S' or JOB = 'B' then
C If FACT = 'F', LDWORK >= 2*N*N, for DICO = 'C';
C LDWORK >= 2*N*N + 2*N, for DICO = 'D'.
C If FACT = 'N', LDWORK >= MAX(2*N*N, 3*N), DICO = 'C';
C LDWORK >= 2*N*N + 2*N, for DICO = 'D'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, the QR algorithm failed to compute all
C the eigenvalues (see LAPACK Library routine DGEES);
C elements i+1:n of WR and WI contain eigenvalues
C which have converged, and A contains the partially
C converged Schur form;
C = N+1: if DICO = 'C', and the matrices A and -A' have
C common or very close eigenvalues, or
C if DICO = 'D', and matrix A has almost reciprocal
C eigenvalues (that is, lambda(i) = 1/lambda(j) for
C some i and j, where lambda(i) and lambda(j) are
C eigenvalues of A and i <> j); perturbed values were
C used to solve the equation (but the matrix A is
C unchanged).
C
C METHOD
C
C The Schur factorization of a square matrix A is given by
C
C A = U*S*U'
C
C where U is orthogonal and S is block upper triangular with 1-by-1
C and 2-by-2 blocks on its diagonal, these blocks corresponding to
C the eigenvalues of A, the 2-by-2 blocks being complex conjugate
C pairs. This factorization is obtained by numerically stable
C methods: first A is reduced to upper Hessenberg form (if FACT =
C 'N') by means of Householder transformations and then the
C QR Algorithm is applied to reduce the Hessenberg form to S, the
C transformation matrices being accumulated at each step to give U.
C If A has already been factorized prior to calling the routine
C however, then the factors U and S may be supplied and the initial
C factorization omitted.
C _ _
C If we now put C = U'CU and X = UXU' equations (1) and (2) (see
C PURPOSE) become (for TRANS = 'N')
C _ _ _
C S'X + XS = C, (3)
C and
C _ _ _
C S'XS - X = C, (4)
C
C respectively. Partition S, C and X as
C _ _ _ _
C (s s') (c c') (x x')
C ( 11 ) _ ( 11 ) _ ( 11 )
C S = ( ), C = ( ), X = ( )
C ( ) ( _ ) ( _ )
C ( 0 S ) ( c C ) ( x X )
C 1 1 1
C _ _
C where s , c and x are either scalars or 2-by-2 matrices and s,
C 11 11 11
C _ _
C c and x are either (N-1) element vectors or matrices with two
C columns. Equations (3) and (4) can then be re-written as
C _ _ _
C s' x + x s = c (3.1)
C 11 11 11 11 11
C
C _ _ _ _
C S'x + xs = c - sx (3.2)
C 1 11 11
C
C _ _
C S'X + X S = C - (sx' + xs') (3.3)
C 1 1 1 1 1
C and
C _ _ _
C s' x s - x = c (4.1)
C 11 11 11 11 11
C
C _ _ _ _
C S'xs - x = c - sx s (4.2)
C 1 11 11 11
C
C _ _ _
C S'X S - X = C - sx s' - [s(S'x)' + (S'x)s'] (4.3)
C 1 1 1 1 1 11 1 1
C _
C respectively. If DICO = 'C' ['D'], then once x has been
C 11
C found from equation (3.1) [(4.1)], equation (3.2) [(4.2)] can be
C _
C solved by forward substitution for x and then equation (3.3)
C [(4.3)] is of the same form as (3) [(4)] but of the order (N-1) or
C (N-2) depending upon whether s is 1-by-1 or 2-by-2.
C 11
C _ _
C When s is 2-by-2 then x and c will be 1-by-2 matrices and s,
C 11 11 11
C _ _
C x and c are matrices with two columns. In this case, equation
C (3.1) [(4.1)] defines the three equations in the unknown elements
C _
C of x and equation (3.2) [(4.2)] can then be solved by forward
C 11 _
C substitution, a row of x being found at each step.
C
C REFERENCES
C
C [1] Barraud, A.Y. T
C A numerical algorithm to solve A XA - X = Q.
C IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
C
C [2] Bartels, R.H. and Stewart, G.W. T
C Solution of the matrix equation A X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [3] Hammarling, S.J.
C Numerical solution of the stable, non-negative definite
C Lyapunov equation.
C IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C If DICO = 'C', SEP is defined as the separation of op(A) and
C -op(A)':
C
C sep( op(A), -op(A)' ) = sigma_min( T )
C
C and if DICO = 'D', SEP is defined as
C
C sep( op(A), op(A)' ) = sigma_min( T )
C
C where sigma_min(T) is the smallest singular value of the
C N*N-by-N*N matrix
C
C T = kprod( I(N), op(A)' ) + kprod( op(A)', I(N) ) (DICO = 'C'),
C
C T = kprod( op(A)', op(A)' ) - I(N**2) (DICO = 'D').
C
C I(x) is an x-by-x identity matrix, and kprod denotes the Kronecker
C product. The program estimates sigma_min(T) by the reciprocal of
C an estimate of the 1-norm of inverse(T). The true reciprocal
C 1-norm of inverse(T) cannot differ from sigma_min(T) by more
C than a factor of N.
C
C When SEP is small, small changes in A, C can cause large changes
C in the solution of the equation. An approximate bound on the
C maximum relative error in the computed solution is
C
C EPS * norm(A) / SEP (DICO = 'C'),
C
C EPS * norm(A)**2 / SEP (DICO = 'D'),
C
C where EPS is the machine precision.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, July 1997.
C Supersedes Release 2.0 routine SB03AD by Control Systems Research
C Group, Kingston Polytechnic, United Kingdom.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999.
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOB, TRANA
INTEGER INFO, LDA, LDC, LDU, LDWORK, N
DOUBLE PRECISION FERR, SCALE, SEP
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), DWORK( * ),
$ U( LDU, * ), WI( * ), WR( * )
C .. Local Scalars ..
LOGICAL CONT, NOFACT, NOTA, WANTBH, WANTSP, WANTX
CHARACTER NOTRA, NTRNST, TRANST, UPLO
INTEGER I, IERR, KASE, LWA, MINWRK, NN, NN2, SDIM
DOUBLE PRECISION EPS, EST, SCALEF
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C .. External Functions ..
LOGICAL LSAME, SELECT1
DOUBLE PRECISION DLAMCH, DLANHS
EXTERNAL DLAMCH, DLANHS, LSAME, SELECT1
C .. External Subroutines ..
EXTERNAL DCOPY, DGEES, DLACON, MB01RD, SB03MX, SB03MY,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
CONT = LSAME( DICO, 'C' )
WANTX = LSAME( JOB, 'X' )
WANTSP = LSAME( JOB, 'S' )
WANTBH = LSAME( JOB, 'B' )
NOFACT = LSAME( FACT, 'N' )
NOTA = LSAME( TRANA, 'N' )
NN = N*N
NN2 = 2*NN
C
INFO = 0
IF( .NOT.CONT .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
INFO = -1
ELSE IF( .NOT.WANTBH .AND. .NOT.WANTSP .AND. .NOT.WANTX ) THEN
INFO = -2
ELSE IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -3
ELSE IF( .NOT.NOTA .AND. .NOT.LSAME( TRANA, 'T' ) .AND.
$ .NOT.LSAME( TRANA, 'C' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDU.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( WANTSP .AND. LDC.LT.1 .OR.
$ .NOT.WANTSP .AND. LDC.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE
IF ( WANTX ) THEN
IF ( NOFACT ) THEN
MINWRK = MAX( NN, 3*N )
ELSE IF ( CONT ) THEN
MINWRK = NN
ELSE
MINWRK = MAX( NN, 2*N )
END IF
ELSE
IF ( CONT ) THEN
IF ( NOFACT ) THEN
MINWRK = MAX( NN2, 3*N )
ELSE
MINWRK = NN2
END IF
ELSE
MINWRK = NN2 + 2*N
END IF
END IF
IF( LDWORK.LT.MAX( 1, MINWRK ) )
$ INFO = -19
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB03MD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
SCALE = ONE
IF( WANTBH )
$ FERR = ZERO
DWORK(1) = ONE
RETURN
END IF
C
LWA = 0
C
IF( NOFACT ) THEN
C
C Compute the Schur factorization of A.
C Workspace: need 3*N;
C prefer larger.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
CALL DGEES( 'Vectors', 'Not ordered', SELECT1, N, A, LDA, SDIM,
$ WR, WI, U, LDU, DWORK, LDWORK, BWORK, INFO )
IF( INFO.GT.0 )
$ RETURN
LWA = INT( DWORK( 1 ) )
END IF
C
IF( .NOT.WANTSP ) THEN
C
C Transform the right-hand side.
C Workspace: N*N.
C
NTRNST = 'N'
TRANST = 'T'
UPLO = 'U'
CALL MB01RD( UPLO, TRANST, N, N, ZERO, ONE, C, LDC, U, LDU, C,
$ LDC, DWORK, LDWORK, INFO )
C
DO 10 I = 2, N
CALL DCOPY( I-1, C(1,I), 1, C(I,1), LDC )
10 CONTINUE
C
LWA = MAX( LWA, NN )
C
C Solve the transformed equation.
C Workspace for DICO = 'D': 2*N.
C
IF ( CONT ) THEN
CALL SB03MY( TRANA, N, A, LDA, C, LDC, SCALE, INFO )
ELSE
CALL SB03MX( TRANA, N, A, LDA, C, LDC, SCALE, DWORK, INFO )
END IF
IF( INFO.GT.0 )
$ INFO = N + 1
C
C Transform back the solution.
C Workspace: N*N.
C
CALL MB01RD( UPLO, NTRNST, N, N, ZERO, ONE, C, LDC, U, LDU, C,
$ LDC, DWORK, LDWORK, IERR )
C
DO 20 I = 2, N
CALL DCOPY( I-1, C(1,I), 1, C(I,1), LDC )
20 CONTINUE
C
END IF
C
IF( .NOT.WANTX ) THEN
C
C Estimate the separation.
C Workspace: 2*N*N for DICO = 'C';
C 2*N*N + 2*N for DICO = 'D'.
C
IF( NOTA ) THEN
NOTRA = 'T'
ELSE
NOTRA = 'N'
END IF
C
EST = ZERO
KASE = 0
C REPEAT
30 CONTINUE
CALL DLACON( NN, DWORK(NN+1), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
IF( CONT ) THEN
CALL SB03MY( TRANA, N, A, LDA, DWORK, N, SCALEF,
$ IERR )
ELSE
CALL SB03MX( TRANA, N, A, LDA, DWORK, N, SCALEF,
$ DWORK(NN2+1), IERR )
END IF
ELSE
IF( CONT ) THEN
CALL SB03MY( NOTRA, N, A, LDA, DWORK, N, SCALEF,
$ IERR )
ELSE
CALL SB03MX( NOTRA, N, A, LDA, DWORK, N, SCALEF,
$ DWORK(NN2+1), IERR )
END IF
END IF
GO TO 30
END IF
C UNTIL KASE = 0
C
SEP = SCALEF / EST
C
IF( WANTBH ) THEN
C
C Get the machine precision.
C
EPS = DLAMCH( 'P' )
C
C Compute the estimate of the relative error.
C
IF ( CONT ) THEN
FERR = EPS*DLANHS( 'Frobenius', N, A, LDA, DWORK )/SEP
ELSE
FERR = EPS*DLANHS( 'Frobenius', N, A, LDA, DWORK )**2/SEP
END IF
END IF
END IF
C
DWORK( 1 ) = DBLE( MAX( LWA, MINWRK ) )
RETURN
C *** Last line of SB03MD ***
END
|