1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
SUBROUTINE SB02QD( JOB, FACT, TRANA, UPLO, LYAPUN, N, A, LDA, T,
$ LDT, U, LDU, G, LDG, Q, LDQ, X, LDX, SEP,
$ RCOND, FERR, IWORK, DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To estimate the conditioning and compute an error bound on the
C solution of the real continuous-time matrix algebraic Riccati
C equation
C
C op(A)'*X + X*op(A) + Q - X*G*X = 0, (1)
C
C where op(A) = A or A' (A**T) and Q, G are symmetric (Q = Q**T,
C G = G**T). The matrices A, Q and G are N-by-N and the solution X
C is N-by-N.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'C': Compute the reciprocal condition number only;
C = 'E': Compute the error bound only;
C = 'B': Compute both the reciprocal condition number and
C the error bound.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization of
C the matrix Ac = A - G*X (if TRANA = 'N') or Ac = A - X*G
C (if TRANA = 'T' or 'C') is supplied on entry, as follows:
C = 'F': On entry, T and U (if LYAPUN = 'O') contain the
C factors from the real Schur factorization of the
C matrix Ac;
C = 'N': The Schur factorization of Ac will be computed
C and the factors will be stored in T and U (if
C LYAPUN = 'O').
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C UPLO CHARACTER*1
C Specifies which part of the symmetric matrices Q and G is
C to be used, as follows:
C = 'U': Upper triangular part;
C = 'L': Lower triangular part.
C
C LYAPUN CHARACTER*1
C Specifies whether or not the original Lyapunov equations
C should be solved in the iterative estimation process,
C as follows:
C = 'O': Solve the original Lyapunov equations, updating
C the right-hand sides and solutions with the
C matrix U, e.g., RHS <-- U'*RHS*U;
C = 'R': Solve reduced Lyapunov equations only, without
C updating the right-hand sides and solutions.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, Q, and G. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C If FACT = 'N' or LYAPUN = 'O', the leading N-by-N part of
C this array must contain the matrix A.
C If FACT = 'F' and LYAPUN = 'R', A is not referenced.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= max(1,N), if FACT = 'N' or LYAPUN = 'O';
C LDA >= 1, if FACT = 'F' and LYAPUN = 'R'.
C
C T (input or output) DOUBLE PRECISION array, dimension
C (LDT,N)
C If FACT = 'F', then T is an input argument and on entry,
C the leading N-by-N upper Hessenberg part of this array
C must contain the upper quasi-triangular matrix T in Schur
C canonical form from a Schur factorization of Ac (see
C argument FACT).
C If FACT = 'N', then T is an output argument and on exit,
C if INFO = 0 or INFO = N+1, the leading N-by-N upper
C Hessenberg part of this array contains the upper quasi-
C triangular matrix T in Schur canonical form from a Schur
C factorization of Ac (see argument FACT).
C
C LDT INTEGER
C The leading dimension of the array T. LDT >= max(1,N).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,N)
C If LYAPUN = 'O' and FACT = 'F', then U is an input
C argument and on entry, the leading N-by-N part of this
C array must contain the orthogonal matrix U from a real
C Schur factorization of Ac (see argument FACT).
C If LYAPUN = 'O' and FACT = 'N', then U is an output
C argument and on exit, if INFO = 0 or INFO = N+1, it
C contains the orthogonal N-by-N matrix from a real Schur
C factorization of Ac (see argument FACT).
C If LYAPUN = 'R', the array U is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= 1, if LYAPUN = 'R';
C LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C G (input) DOUBLE PRECISION array, dimension (LDG,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular part of the
C matrix G.
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular part of the
C matrix G. _
C Matrix G should correspond to G in the "reduced" Riccati
C equation (with matrix T, instead of A), if LYAPUN = 'R'.
C See METHOD.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= max(1,N).
C
C Q (input) DOUBLE PRECISION array, dimension (LDQ,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular part of the
C matrix Q.
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular part of the
C matrix Q. _
C Matrix Q should correspond to Q in the "reduced" Riccati
C equation (with matrix T, instead of A), if LYAPUN = 'R'.
C See METHOD.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= max(1,N).
C
C X (input) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array must contain the
C symmetric solution matrix of the original Riccati
C equation (with matrix A), if LYAPUN = 'O', or of the
C "reduced" Riccati equation (with matrix T), if
C LYAPUN = 'R'. See METHOD.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= max(1,N).
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'B', the estimated quantity
C sep(op(Ac),-op(Ac)').
C If N = 0, or X = 0, or JOB = 'E', SEP is not referenced.
C
C RCOND (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'B', an estimate of the reciprocal
C condition number of the continuous-time Riccati equation.
C If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C If JOB = 'E', RCOND is not referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'E' or JOB = 'B', an estimated forward error
C bound for the solution X. If XTRUE is the true solution,
C FERR bounds the magnitude of the largest entry in
C (X - XTRUE) divided by the magnitude of the largest entry
C in X.
C If N = 0 or X = 0, FERR is set to 0.
C If JOB = 'C', FERR is not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C Let LWA = N*N, if LYAPUN = 'O' and JOB = 'E' or 'B';
C LWA = 0, otherwise.
C If FACT = 'N', then
C LDWORK = MAX(1, 5*N, 2*N*N), if JOB = 'C';
C LDWORK = MAX(1, LWA + 5*N, 4*N*N ), if JOB = 'E', 'B'.
C If FACT = 'F', then
C LDWORK = MAX(1, 2*N*N), if JOB = 'C';
C LDWORK = MAX(1, 4*N*N ), if JOB = 'E' or 'B'.
C For good performance, LDWORK must generally be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, i <= N, the QR algorithm failed to
C complete the reduction of the matrix Ac to Schur
C canonical form (see LAPACK Library routine DGEES);
C on exit, the matrix T(i+1:N,i+1:N) contains the
C partially converged Schur form, and DWORK(i+1:N) and
C DWORK(N+i+1:2*N) contain the real and imaginary
C parts, respectively, of the converged eigenvalues;
C this error is unlikely to appear;
C = N+1: if the matrices T and -T' have common or very
C close eigenvalues; perturbed values were used to
C solve Lyapunov equations, but the matrix T, if given
C (for FACT = 'F'), is unchanged.
C
C METHOD
C
C The condition number of the Riccati equation is estimated as
C
C cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(Q) +
C norm(Pi)*norm(G) ) / norm(X),
C
C where Omega, Theta and Pi are linear operators defined by
C
C Omega(W) = op(Ac)'*W + W*op(Ac),
C Theta(W) = inv(Omega(op(W)'*X + X*op(W))),
C Pi(W) = inv(Omega(X*W*X)),
C
C and Ac = A - G*X (if TRANA = 'N') or Ac = A - X*G (if TRANA = 'T'
C or 'C'). Note that the Riccati equation (1) is equivalent to
C _ _ _ _ _ _
C op(T)'*X + X*op(T) + Q + X*G*X = 0, (2)
C _ _ _
C where X = U'*X*U, Q = U'*Q*U, and G = U'*G*U, with U the
C orthogonal matrix reducing Ac to a real Schur form, T = U'*Ac*U.
C
C The routine estimates the quantities
C
C sep(op(Ac),-op(Ac)') = 1 / norm(inv(Omega)),
C
C norm(Theta) and norm(Pi) using 1-norm condition estimator.
C
C The forward error bound is estimated using a practical error bound
C similar to the one proposed in [2].
C
C REFERENCES
C
C [1] Ghavimi, A.R. and Laub, A.J.
C Backward error, sensitivity, and refinement of computed
C solutions of algebraic Riccati equations.
C Numerical Linear Algebra with Applications, vol. 2, pp. 29-49,
C 1995.
C
C [2] Higham, N.J.
C Perturbation theory and backward error for AX-XB=C.
C BIT, vol. 33, pp. 124-136, 1993.
C
C [3] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.
C DGRSVX and DMSRIC: Fortran 77 subroutines for solving
C continuous-time matrix algebraic Riccati equations with
C condition and accuracy estimates.
C Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ.
C Chemnitz, May 1998.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C The accuracy of the estimates obtained depends on the solution
C accuracy and on the properties of the 1-norm estimator.
C
C FURTHER COMMENTS
C
C The option LYAPUN = 'R' may occasionally produce slightly worse
C or better estimates, and it is much faster than the option 'O'.
C When SEP is computed and it is zero, the routine returns
C immediately, with RCOND and FERR (if requested) set to 0 and 1,
C respectively. In this case, the equation is singular.
C
C CONTRIBUTOR
C
C P.Hr. Petkov, Technical University of Sofia, December 1998.
C V. Sima, Katholieke Univ. Leuven, Belgium, February 1999.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Conditioning, error estimates, orthogonal transformation,
C real Schur form, Riccati equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ FOUR = 4.0D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER FACT, JOB, LYAPUN, TRANA, UPLO
INTEGER INFO, LDA, LDG, LDQ, LDT, LDU, LDWORK, LDX, N
DOUBLE PRECISION FERR, RCOND, SEP
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), DWORK( * ), G( LDG, * ),
$ Q( LDQ, * ), T( LDT, * ), U( LDU, * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL JOBB, JOBC, JOBE, LOWER, NEEDAC, NOFACT,
$ NOTRNA, UPDATE
CHARACTER LOUP, SJOB, TRANAT
INTEGER I, IABS, INFO2, IRES, ITMP, IXBS, J, JJ, JX,
$ KASE, LDW, LWA, NN, SDIM, WRKOPT
DOUBLE PRECISION ANORM, BIGNUM, DENOM, EPS, EPSN, EST, GNORM,
$ PINORM, QNORM, SCALE, SIG, TEMP, THNORM, TMAX,
$ XANORM, XNORM
C ..
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C ..
C .. External Functions ..
LOGICAL LSAME, SELECT1
DOUBLE PRECISION DLAMCH, DLANGE, DLANHS, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANHS, DLANSY, LSAME, SELECT1
C ..
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEES, DLACON, DLACPY, DSYMM,
$ DSYR2K, MA02ED, MB01RU, MB01UD, SB03MY, SB03QX,
$ SB03QY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
JOBC = LSAME( JOB, 'C' )
JOBE = LSAME( JOB, 'E' )
JOBB = LSAME( JOB, 'B' )
NOFACT = LSAME( FACT, 'N' )
NOTRNA = LSAME( TRANA, 'N' )
LOWER = LSAME( UPLO, 'L' )
UPDATE = LSAME( LYAPUN, 'O' )
C
NEEDAC = UPDATE .AND. .NOT.JOBC
C
NN = N*N
IF( NEEDAC ) THEN
LWA = NN
ELSE
LWA = 0
END IF
C
IF( NOFACT ) THEN
IF( JOBC ) THEN
LDW = MAX( 5*N, 2*NN )
ELSE
LDW = MAX( LWA + 5*N, 4*NN )
END IF
ELSE
IF( JOBC ) THEN
LDW = 2*NN
ELSE
LDW = 4*NN
END IF
END IF
C
INFO = 0
IF( .NOT.( JOBB .OR. JOBC .OR. JOBE ) ) THEN
INFO = -1
ELSE IF( .NOT.( NOFACT .OR. LSAME( FACT, 'F' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
$ LSAME( TRANA, 'C' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -4
ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.1 .OR.
$ ( LDA.LT.N .AND. ( UPDATE .OR. NOFACT ) ) ) THEN
INFO = -8
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDU.LT.1 .OR. ( LDU.LT.N .AND. UPDATE ) ) THEN
INFO = -12
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, LDW ) ) THEN
INFO = -24
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB02QD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
IF( .NOT.JOBE )
$ RCOND = ONE
IF( .NOT.JOBC )
$ FERR = ZERO
DWORK( 1 ) = ONE
RETURN
END IF
C
C Compute the 1-norm of the matrix X.
C
XNORM = DLANSY( '1-norm', UPLO, N, X, LDX, DWORK )
IF( XNORM.EQ.ZERO ) THEN
C
C The solution is zero.
C
IF( .NOT.JOBE )
$ RCOND = ZERO
IF( .NOT.JOBC )
$ FERR = ZERO
DWORK( 1 ) = DBLE( N )
RETURN
END IF
C
C Workspace usage.
C
IXBS = 0
ITMP = IXBS + NN
IABS = ITMP + NN
IRES = IABS + NN
C
C Workspace: LWR, where
C LWR = N*N, if LYAPUN = 'O' and JOB = 'E' or 'B', or
C FACT = 'N',
C LWR = 0, otherwise.
C
IF( NEEDAC .OR. NOFACT ) THEN
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK, N )
IF( NOTRNA ) THEN
C
C Compute Ac = A - G*X.
C
CALL DSYMM( 'Left', UPLO, N, N, -ONE, G, LDG, X, LDX, ONE,
$ DWORK, N )
ELSE
C
C Compute Ac = A - X*G.
C
CALL DSYMM( 'Right', UPLO, N, N, -ONE, G, LDG, X, LDX, ONE,
$ DWORK, N )
END IF
C
WRKOPT = DBLE( NN )
IF( NOFACT )
$ CALL DLACPY( 'Full', N, N, DWORK, N, T, LDT )
ELSE
WRKOPT = DBLE( N )
END IF
C
IF( NOFACT ) THEN
C
C Compute the Schur factorization of Ac, Ac = U*T*U'.
C Workspace: need LWA + 5*N;
C prefer larger;
C LWA = N*N, if LYAPUN = 'O' and JOB = 'E' or 'B';
C LWA = 0, otherwise.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
IF( UPDATE ) THEN
SJOB = 'V'
ELSE
SJOB = 'N'
END IF
CALL DGEES( SJOB, 'Not ordered', SELECT1, N, T, LDT, SDIM,
$ DWORK( LWA+1 ), DWORK( LWA+N+1 ), U, LDU,
$ DWORK( LWA+2*N+1 ), LDWORK-LWA-2*N, BWORK, INFO )
IF( INFO.GT.0 ) THEN
IF( LWA.GT.0 )
$ CALL DCOPY( 2*N, DWORK( LWA+1 ), 1, DWORK, 1 )
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, INT( DWORK( LWA+2*N+1 ) ) + LWA + 2*N )
END IF
IF( NEEDAC )
$ CALL DLACPY( 'Full', N, N, DWORK, N, DWORK( IABS+1 ), N )
C
IF( NOTRNA ) THEN
TRANAT = 'T'
ELSE
TRANAT = 'N'
END IF
C
IF( .NOT.JOBE ) THEN
C
C Estimate sep(op(Ac),-op(Ac)') = sep(op(T),-op(T)') and
C norm(Theta).
C Workspace LWA + 2*N*N.
C
CALL SB03QY( 'Both', TRANA, LYAPUN, N, T, LDT, U, LDU, X, LDX,
$ SEP, THNORM, IWORK, DWORK, LDWORK, INFO )
C
WRKOPT = MAX( WRKOPT, LWA + 2*NN )
C
C Return if the equation is singular.
C
IF( SEP.EQ.ZERO ) THEN
RCOND = ZERO
IF( JOBB )
$ FERR = ONE
DWORK( 1 ) = DBLE( WRKOPT )
RETURN
END IF
C
C Estimate norm(Pi).
C Workspace LWA + 2*N*N.
C
KASE = 0
C
C REPEAT
10 CONTINUE
CALL DLACON( NN, DWORK( ITMP+1 ), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
C
C Select the triangular part of symmetric matrix to be used.
C
IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP+1 ))
$ .GE.
$ DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP+1 ))
$ ) THEN
LOUP = 'U'
ELSE
LOUP = 'L'
END IF
C
C Compute RHS = X*W*X.
C
CALL MB01RU( LOUP, 'No Transpose', N, N, ZERO, ONE, DWORK,
$ N, X, LDX, DWORK, N, DWORK( ITMP+1 ), NN,
$ INFO2 )
C
IF( UPDATE ) THEN
C
C Transform the right-hand side: RHS := U'*RHS*U.
C
CALL MB01RU( LOUP, 'Transpose', N, N, ZERO, ONE, DWORK,
$ N, U, LDU, DWORK, N, DWORK( ITMP+1 ), NN,
$ INFO2 )
END IF
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( LOUP, N, DWORK, N )
C
IF( KASE.EQ.1 ) THEN
C
C Solve op(T)'*Y + Y*op(T) = scale*RHS.
C
CALL SB03MY( TRANA, N, T, LDT, DWORK, N, SCALE, INFO2 )
ELSE
C
C Solve op(T)*W + W*op(T)' = scale*RHS.
C
CALL SB03MY( TRANAT, N, T, LDT, DWORK, N, SCALE, INFO2 )
END IF
C
IF( UPDATE ) THEN
C
C Transform back to obtain the solution: Z := U*Z*U', with
C Z = Y or Z = W.
C
CALL MB01RU( LOUP, 'No transpose', N, N, ZERO, ONE,
$ DWORK, N, U, LDU, DWORK, N, DWORK( ITMP+1 ),
$ NN, INFO2 )
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( LOUP, N, DWORK, N )
END IF
GO TO 10
END IF
C UNTIL KASE = 0
C
IF( EST.LT.SCALE ) THEN
PINORM = EST / SCALE
ELSE
BIGNUM = ONE / DLAMCH( 'Safe minimum' )
IF( EST.LT.SCALE*BIGNUM ) THEN
PINORM = EST / SCALE
ELSE
PINORM = BIGNUM
END IF
END IF
C
C Compute the 1-norm of A or T.
C
IF( UPDATE ) THEN
ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
ELSE
ANORM = DLANHS( '1-norm', N, T, LDT, DWORK )
END IF
C
C Compute the 1-norms of the matrices Q and G.
C
QNORM = DLANSY( '1-norm', UPLO, N, Q, LDQ, DWORK )
GNORM = DLANSY( '1-norm', UPLO, N, G, LDG, DWORK )
C
C Estimate the reciprocal condition number.
C
TMAX = MAX( SEP, XNORM, ANORM, GNORM )
IF( TMAX.LE.ONE ) THEN
TEMP = SEP*XNORM
DENOM = QNORM + ( SEP*ANORM )*THNORM +
$ ( SEP*GNORM )*PINORM
ELSE
TEMP = ( SEP / TMAX )*( XNORM / TMAX )
DENOM = ( ( ONE / TMAX )*( QNORM / TMAX ) ) +
$ ( ( SEP / TMAX )*( ANORM / TMAX ) )*THNORM +
$ ( ( SEP / TMAX )*( GNORM / TMAX ) )*PINORM
END IF
IF( TEMP.GE.DENOM ) THEN
RCOND = ONE
ELSE
RCOND = TEMP / DENOM
END IF
END IF
C
IF( .NOT.JOBC ) THEN
C
C Form a triangle of the residual matrix
C R = op(A)'*X + X*op(A) + Q - X*G*X,
C or _ _ _ _ _ _
C R = op(T)'*X + X*op(T) + Q + X*G*X,
C exploiting the symmetry.
C Workspace 4*N*N.
C
IF( UPDATE ) THEN
CALL DLACPY( UPLO, N, N, Q, LDQ, DWORK( IRES+1 ), N )
CALL DSYR2K( UPLO, TRANAT, N, N, ONE, A, LDA, X, LDX, ONE,
$ DWORK( IRES+1 ), N )
SIG = -ONE
ELSE
CALL MB01UD( 'Right', TRANA, N, N, ONE, T, LDT, X, LDX,
$ DWORK( IRES+1 ), N, INFO2 )
JJ = IRES + 1
IF( LOWER ) THEN
DO 20 J = 1, N
CALL DAXPY( N-J+1, ONE, DWORK( JJ ), N, DWORK( JJ ),
$ 1 )
CALL DAXPY( N-J+1, ONE, Q( J, J ), 1, DWORK( JJ ), 1 )
JJ = JJ + N + 1
20 CONTINUE
ELSE
DO 30 J = 1, N
CALL DAXPY( J, ONE, DWORK( IRES+J ), N, DWORK( JJ ),
$ 1 )
CALL DAXPY( J, ONE, Q( 1, J ), 1, DWORK( JJ ), 1 )
JJ = JJ + N
30 CONTINUE
END IF
SIG = ONE
END IF
CALL MB01RU( UPLO, TRANAT, N, N, ONE, SIG, DWORK( IRES+1 ),
$ N, X, LDX, G, LDG, DWORK( ITMP+1 ), NN, INFO2 )
C
C Get the machine precision.
C
EPS = DLAMCH( 'Epsilon' )
EPSN = EPS*DBLE( N + 4 )
TEMP = EPS*FOUR
C
C Add to abs(R) a term that takes account of rounding errors in
C forming R:
C abs(R) := abs(R) + EPS*(4*abs(Q) + (n+4)*(abs(op(Ac))'*abs(X)
C + abs(X)*abs(op(Ac))) + 2*(n+1)*abs(X)*abs(G)*abs(X)),
C or _ _
C abs(R) := abs(R) + EPS*(4*abs(Q) + (n+4)*(abs(op(T))'*abs(X)
C _ _ _ _
C + abs(X)*abs(op(T))) + 2*(n+1)*abs(X)*abs(G)*abs(X)),
C where EPS is the machine precision.
C
DO 50 J = 1, N
DO 40 I = 1, N
DWORK( IXBS+(J-1)*N+I ) = ABS( X( I, J ) )
40 CONTINUE
50 CONTINUE
C
IF( LOWER ) THEN
DO 70 J = 1, N
DO 60 I = J, N
DWORK( IRES+(J-1)*N+I ) = TEMP*ABS( Q( I, J ) ) +
$ ABS( DWORK( IRES+(J-1)*N+I ) )
60 CONTINUE
70 CONTINUE
ELSE
DO 90 J = 1, N
DO 80 I = 1, J
DWORK( IRES+(J-1)*N+I ) = TEMP*ABS( Q( I, J ) ) +
$ ABS( DWORK( IRES+(J-1)*N+I ) )
80 CONTINUE
90 CONTINUE
END IF
C
IF( UPDATE ) THEN
C
DO 110 J = 1, N
DO 100 I = 1, N
DWORK( IABS+(J-1)*N+I ) =
$ ABS( DWORK( IABS+(J-1)*N+I ) )
100 CONTINUE
110 CONTINUE
C
CALL DSYR2K( UPLO, TRANAT, N, N, EPSN, DWORK( IABS+1 ), N,
$ DWORK( IXBS+1 ), N, ONE, DWORK( IRES+1 ), N )
ELSE
C
DO 130 J = 1, N
DO 120 I = 1, MIN( J+1, N )
DWORK( IABS+(J-1)*N+I ) = ABS( T( I, J ) )
120 CONTINUE
130 CONTINUE
C
CALL MB01UD( 'Left', TRANAT, N, N, EPSN, DWORK( IABS+1 ), N,
$ DWORK( IXBS+1), N, DWORK( ITMP+1 ), N, INFO2 )
JJ = IRES + 1
JX = ITMP + 1
IF( LOWER ) THEN
DO 140 J = 1, N
CALL DAXPY( N-J+1, ONE, DWORK( JX ), N, DWORK( JX ),
$ 1 )
CALL DAXPY( N-J+1, ONE, DWORK( JX ), 1, DWORK( JJ ),
$ 1 )
JJ = JJ + N + 1
JX = JX + N + 1
140 CONTINUE
ELSE
DO 150 J = 1, N
CALL DAXPY( J, ONE, DWORK( ITMP+J ), N, DWORK( JX ),
$ 1 )
CALL DAXPY( J, ONE, DWORK( JX ), 1, DWORK( JJ ), 1 )
JJ = JJ + N
JX = JX + N
150 CONTINUE
END IF
END IF
C
IF( LOWER ) THEN
DO 170 J = 1, N
DO 160 I = J, N
DWORK( IABS+(J-1)*N+I ) = ABS( G( I, J ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 190 J = 1, N
DO 180 I = 1, J
DWORK( IABS+(J-1)*N+I ) = ABS( G( I, J ) )
180 CONTINUE
190 CONTINUE
END IF
C
CALL MB01RU( UPLO, TRANA, N, N, ONE, EPS*DBLE( 2*( N + 1 ) ),
$ DWORK( IRES+1 ), N, DWORK( IXBS+1), N,
$ DWORK( IABS+1 ), N, DWORK( ITMP+1 ), NN, INFO2 )
C
WRKOPT = MAX( WRKOPT, 4*NN )
C
C Compute forward error bound, using matrix norm estimator.
C Workspace 4*N*N.
C
XANORM = DLANSY( 'Max', UPLO, N, X, LDX, DWORK )
C
CALL SB03QX( TRANA, UPLO, LYAPUN, N, XANORM, T, LDT, U, LDU,
$ DWORK( IRES+1 ), N, FERR, IWORK, DWORK, IRES,
$ INFO )
END IF
C
DWORK( 1 ) = DBLE( WRKOPT )
RETURN
C
C *** Last line of SB02QD ***
END
|