1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
subroutine polmc(nm,ng,n,m,a,b,g,wr,wi,z,inc,invr,ierr,jpvt,
x rm1,rm2,rv1,rv2,rv3,rv4)
c
double precision a(nm,n),b(nm,m),g(ng,n),wr(n),wi(n),z(nm,n),
x rm1(m,m),rm2(m,*),rv1(n),rv2(n),rv3(m),rv4(m)
double precision p,q,r,s,t,zz
integer invr(n),jpvt(m)
logical complx
c!purpose
c this subroutine determines the state feedback matrix g of the
c linear time-invariant multi-input system
c
c dx / dt = a * x + b * u,
c
c where a is a nxn and b is a nxm matrix, such that the
c closed-loop system
c
c dx / dt = (a - b * g) * x
c
c has desired poles. the system must be preliminary reduced into
c orthogonal canonical form using the subroutine trmcf.
c!calling sequence
c
c subroutine polmc(nm,ng,n,m,a,b,g,wr,wi,z,inc,invr,ierr,jpvt,
c x rm1,rm2,rv1,rv2,rv3,rv4)
c
c on input-
c
c nm is an integer variable set equal to the row dimension
c of the two-dimensional arrays a, b and z as
c specified in the dimension statements for a, b and z
c in the calling program,
c
c ng is an integer variable set equal to the row dimension
c of the two-dimensional array g as specified in the
c dimension statement for g in the calling program,
c
c n is an integer variable set equal to the order of the
c matrices a and z. n must be not greater than nm,
c
c m is an integer variable set equal to the number of the
c columns of the matrix b. m must be not greater than
c ng,
c
c a is a working precision real two-dimensional variable with
c row dimension nm and column dimension at least n
c containing the block-hessenberg canonical form of the
c matrix a. the elements below the subdiagonal blocks
c must be equal to zero,
c
c b is a working precision real two-dimensional variable with
c row dimension nm and column dimension at least m
c containing the canonical form of the matrix b. the
c elements below the invr(1)-th row must be equal to zero,
c
c wr,wi are working precision real one-dimensional variables
c of dimension at least n containing the real and
c imaginery parts, respectively, of the desired poles,
c the poles can be unordered except that the complex
c conjugate pairs of poles must appfar consecutively.
c note that on output the imaginery parts of the poles
c may be modified,
c
c z is a working precision real two-dimensonal variale with
c row dimension nm and column dimension at least n
c containing the orthogonal transformation matrix produced
c in trmcf which reduces the system into canonical form,
c
c inc is an integer variable set equal to the controllability
c index of the system,
c
c invr is an integer one-dimensional variable of dimension at
c least inc containing the dimensons of the
c controllable subsystems in the canonical form.
c
c on output-
c
c a contains the upper quast-triangular form of the closed-
c loop system matrix a - b * g, that is triangular except
c of possible 2x2 blocks on the diagonal,
c
c b contains the transformed matrix b,
c
c g is a working precision real two-dimensional variable with
c row dimension ng and column dimension at least n
c containing the state feedback matrix g of the original
c system,
c
c z contains the orthogonal matrix which reduces the closed-
c loop system matrix a - b * g to the upper quasi-
c triangular form,
c
c ierr is an integer variable set equal to
c zero for normal return,
c 1 if the system is not completely controllable,
c
c jpvt is an integer temporary one-dimensonal array of
c dimension at least m used in the solution of linear
c equations,
c
c rm1 is a working precision real temporary two-dimensonal
c array of dimension at least mxm used in the solution
c of linear equations,
c
c rm2 is a working precision real temporary two-dimensional
c array od dimension at least mxmax(2,m) used in the
c solution of linear equations,
c
c rv1, are working precision real temporary one-dimensional
c rv2 arrays of dimension at least n used to hold the
c real and imaginery parts, respectively, of the
c eigenvectors during the reduction,
c
c rv3, are working precision real temporary one-dimensional
c rv4 arrays of dimension at least m used in the solution
c of linear equations.
c
c!auxiliary routines
c
c sqrsm
c fortran abs,min,sqrt
c!originator
c p.hr.petkov, higher institute of mechanical and electrical
c engineering, sofia, bulgaria.
c modified by serge Steer INRIA
c Copyright SLICOT
c!
c
ierr = 0
m1 = invr(1)
l = 0
10 l = l + 1
mr = invr(inc)
if (inc .eq. 1) go to 350
lp1 = l + m1
inc1 = inc - 1
mr1 = invr(inc1)
nr = n - mr + 1
nr1 = nr - mr1
complx = wi(l) .ne. 0.0d+0
do 15 i = nr, n
rv1(i) = 0.0d+0
if (complx) rv2(i) = 0.0d+0
15 continue
c
rv1(nr) = 1.0d+0
if (.not. complx) go to 20
if (mr .eq. 1) rv2(nr) = 1.0d+0
if (mr .gt. 1) rv2(nr+1) = 1.0d+0
t = wi(l)
wi(l) = 1.0d+0
wi(l+1) = t * wi(l+1)
c
c compute and transform eigenvector
c
20 do 200 ip = 1, inc
if (ip .eq. inc .and. inc .eq. 2) go to 200
if (ip .eq. inc) go to 120
c
do 40 ii = 1, mr
i = nr + ii - 1
c
do 30 jj = 1, mr1
j = nr1 + jj - 1
rm1(ii,jj) = a(i,j)
30 continue
c
40 continue
c
if (ip .eq. 1) go to 70
c
c scaling
c
s = 0.0d+0
mp1 = mr + 1
np1 = nr + mp1
c
do 50 ii = 1, mp1
i = nr + ii - 1
s = s + abs(rv1(i))
if (complx) s = s + abs(rv2(i))
50 continue
c
do 60 ii = 1, mp1
i = nr + ii - 1
rv1(i) = rv1(i) / s
if (complx) rv2(i) = rv2(i) / s
60 continue
c
if (complx .and. np1 .le. n) rv2(np1) = rv2(np1) / s
70 if (ip .eq. 1) mp1 = 1
np1 = nr + mp1
c
do 100 ii = 1, mr
i = nr + ii - 1
s = wr(l) * rv1(i)
c
do 80 jj = 1, mp1
j = nr + jj - 1
s = s - a(i,j) * rv1(j)
80 continue
c
rm2(ii,1) = s
if (.not. complx) go to 100
rm2(ii,1) = rm2(ii,1) + wi(l+1) * rv2(i)
s = wr(l+1) * rv2(i) + wi(l) * rv1(i)
c
do 90 jj = 1, mp1
c la ligne suivante a ete rajoutee par mes soins
j = nr + jj - 1
s = s - a(i,j) * rv2(j)
90 continue
c
if (np1 .le. n) s = s - a(i,np1) * rv2(np1)
rm2(ii,2) = s
100 continue
c
c solving linear equations for the eigenvector elements
c
nc = 1
if (complx) nc = 2
call dqrsm(rm1,m,mr,mr1,rm2,m,nc,rm2,m,ir,jpvt,
x rv3,rv4)
if (ir .lt. mr) go to 600
c
do 110 ii = 1, mr1
i = nr1 + ii - 1
rv1(i) = rm2(ii,1)
if (complx) rv2(i) = rm2(ii,2)
110 continue
c
if (ip .eq. 1 .and. inc .gt. 2) go to 195
120 nj = nr
if (ip .lt. inc) nj = nr1
ni = nr + mr - 1
inc2 = inc - ip + 2
if (ip .gt. 1) ni = ni + invr(inc2)
if (ip .gt. 2) ni = ni + 1
if (complx .and. ip .gt. 2) ni = min(ni+1,n)
kmr = mr1
if (ip .gt. 1) kmr = mr
c
do 190 kk = 1, kmr
ll = 1
k = nr + mr - kk
if (ip .eq. 1) k = nr - kk
130 p = rv1(k)
if (ll .eq. 2) p = rv2(k)
q = rv1(k+1)
if (ll .eq. 2) q = rv2(k+1)
s = abs(p) + abs(q)
p = p / s
q = q / s
r = sqrt(p*p+q*q)
t = s * r
rv1(k) = t
if (ll .eq. 2) rv2(k) = t
rv1(k+1) = 0.0d+0
if (ll .eq. 2) rv2(k+1) = 0.0d+0
p = p / r
q = q / r
c
c transform a
c
do 140 j = nj, n
zz = a(k,j)
a(k,j) = p * zz + q * a(k+1,j)
a(k+1,j) = p * a(k+1,j) - q * zz
140 continue
c
do 150 i = 1, ni
zz = a(i,k)
a(i,k) = p * zz + q * a(i,k+1)
a(i,k+1) = p * a(i,k+1) - q * zz
150 continue
c
if (k .eq. lp1 .and. ll .eq. 1 .or. k .gt. lp1) go to 170
c
c transform b
c
do 160 j = 1, m
zz = b(k,j)
b(k,j) = p * zz + q * b(k+1,j)
b(k+1,j) = p * b(k+1,j) - q * zz
160 continue
c
c accumulate transformations
c
170 do 180 i = 1, n
zz = z(i,k)
z(i,k) = p * zz + q * z(i,k+1)
z(i,k+1) = p * z(i,k+1) - q * zz
180 continue
c
if (.not. complx .or. ll .eq. 2) go to 190
zz = rv2(k)
rv2(k) = p * zz + q * rv2(k+1)
rv2(k+1) = p * rv2(k+1) - q * zz
if (k + 2 .gt. n) go to 190
k = k + 1
ll = 2
go to 130
190 continue
c
if (ip .eq. inc) go to 200
195 mr = mr1
nr = nr1
if (ip .eq. inc1) go to 200
inc2 = inc - ip - 1
mr1 = invr(inc2)
nr1 = nr1 - mr1
200 continue
c
if (complx) go to 250
c
c find one column of g
c
do 220 ii = 1, m1
i = l + ii
c
do 210 j = 1, m
210 rm1(ii,j) = b(i,j)
c
rm2(ii,1) = a(i,l)
220 continue
c
call dqrsm(rm1,m,m1,m,rm2,m,1,g(1,l),ng,ir,jpvt,rv3,rv4)
if (ir .lt. m1) go to 600
c
do 240 i = 1, lp1
c
do 230 j = 1, m
230 a(i,l) = a(i,l) - b(i,j) * g(j,l)
c
240 continue
c
go to 330
c
c find two columns of g
c
250 l = l + 1
if (lp1 .lt. n) lp1 = lp1 + 1
c
do 270 ii = 1, m1
i = l + ii
if (l + m1 .gt. n) i = i - 1
c
c la ligne suivante a ete rajoutee par mes soins
do 260 j = 1 , m
cxxx if(abs(b(i,j)).le.abs(b(l,j))) i=i-1
260 rm1(ii,j) = b(i,j)
c
p = a(i,l-1)
if (i .eq. l) p = p - (rv2(i) / rv1(i-1)) * wi(i)
rm2(ii,1) = p
q = a(i,l)
if (i .eq. l) q = q - wr(i) + (rv2(i-1) / rv1(i-1)) *wi(i)
rm2(ii,2) = q
270 continue
c
call dqrsm(rm1,m,m1,m,rm2,m,2,rm2,m,ir,jpvt,rv3,rv4)
if (ir .lt. m1) go to 600
c
do 290 i = 1, m
c
do 280 jj = 1, 2
j = l + jj - 2
g(i,j) = rm2(i,jj)
280 continue
c
290 continue
c
do 320 i = 1, lp1
c
do 310 jj = 1, 2
j = l + jj - 2
c
do 300 k = 1, m
300 a(i,j) = a(i,j) - b(i,k)*g(k,j)
c
310 continue
c
320 continue
c
if (l .eq. n) go to 500
330 invr(inc) = invr(inc) - 1
if (invr(inc) .eq. 0) inc = inc - 1
if (complx) invr(inc) = invr(inc) - 1
if (invr(inc) .eq. 0) inc = inc - 1
go to 10
c
c find the rest columns of g
c
350 do 370 ii = 1, mr
i = l + ii - 1
c
do 360 j = 1, m
360 rm1(ii,j) = b(i,j)
c
370 continue
c
do 400 ii = 1, mr
i = l + ii - 1
c
do 380 jj = 1, mr
j = l + jj - 1
if (ii .lt. jj) rm2(ii,jj) = 0.0d+0
if (ii .gt. jj) rm2(ii,jj) = a(i,j)
380 continue
c
400 continue
c
ii = 0
410 ii = ii + 1
i = l + ii - 1
if (wi(i) .ne. 0.0d+0) go to 420
rm2(ii,ii) = a(i,i) - wr(i)
if (ii .eq. mr) go to 430
c la ligne suivante a ete rajoutee par mes soins
goto 410
420 rm2(ii,ii) = a(i,i) - wr(i)
rm2(ii,ii+1) = a(i,i+1) - wi(i)
rm2(ii+1,ii) = a(i+1,i) - wi(i+1)
rm2(ii+1,ii+1) = a(i+1,i+1) - wr(i+1)
ii = ii + 1
if (ii .lt. mr) go to 410
430 call dqrsm(rm1,m,mr,m,rm2,m,m,rm2,m,ir,jpvt,rv3,rv4)
if (ir .lt. mr) go to 600
c
do 450 i = 1, m
c
do 440 jj = 1, mr
j = l + jj - 1
g(i,j) = rm2(i,jj)
440 continue
c
450 continue
c
do 480 i = 1, n
c
do 470 j = l, n
c
do 460 k = 1, m
460 a(i,j) = a(i,j) - b(i,k) * g(k,j)
c
470 continue
c
480 continue
c
c transform g
c
500 do 540 i = 1, m
c
do 520 j = 1, n
s = 0.0d+0
c
do 510 k = 1, n
510 s = s + g(i,k) * z(j,k)
c
rv1(j) = s
520 continue
c
do 530 j = 1, n
530 g(i,j) = rv1(j)
c
540 continue
c
go to 610
c
c set error -- the system is not completely controllable
c
600 ierr = 1
610 return
c
c last card of subroutine polmc
c
end
|