1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
SUBROUTINE MB04OY( M, N, V, TAU, A, LDA, B, LDB, DWORK )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To apply a real elementary reflector H to a real (m+1)-by-n
C matrix C = [ A ], from the left, where A has one row. H is
C [ B ]
C represented in the form
C ( 1 )
C H = I - tau * u *u', u = ( ),
C ( v )
C where tau is a real scalar and v is a real m-vector.
C
C If tau = 0, then H is taken to be the unit matrix.
C
C In-line code is used if H has order < 11.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix B. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrices A and B. N >= 0.
C
C V (input) DOUBLE PRECISION array, dimension (M)
C The vector v in the representation of H.
C
C TAU (input) DOUBLE PRECISION
C The scalar factor of the elementary reflector H.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading 1-by-N part of this array must
C contain the matrix A.
C On exit, the leading 1-by-N part of this array contains
C the updated matrix A (the first row of H * C).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= 1.
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading M-by-N part of this array must
C contain the matrix B.
C On exit, the leading M-by-N part of this array contains
C the updated matrix B (the last m rows of H * C).
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,M).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C DWORK is not referenced if H has order less than 11.
C
C METHOD
C
C The routine applies the elementary reflector H, taking the special
C structure of C into account.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C Based on LAPACK routines DLARFX and DLATZM.
C
C REVISIONS
C
C Dec. 1997.
C
C KEYWORDS
C
C Elementary matrix operations, elementary reflector, orthogonal
C transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER LDA, LDB, M, N
DOUBLE PRECISION TAU
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ), V( * )
C .. Local Scalars ..
INTEGER J
DOUBLE PRECISION SUM, T1, T2, T3, T4, T5, T6, T7, T8, T9, V1, V2,
$ V3, V4, V5, V6, V7, V8, V9
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DGER
C
C .. Executable Statements ..
C
IF( TAU.EQ.ZERO )
$ RETURN
C
C Form H * C, where H has order m+1.
C
GO TO ( 10, 30, 50, 70, 90, 110, 130, 150,
$ 170, 190 ) M+1
C
C Code for general M. Compute
C
C w := C'*u, C := C - tau * u * w'.
C
CALL DCOPY( N, A, LDA, DWORK, 1 )
CALL DGEMV( 'Transpose', M, N, ONE, B, LDB, V, 1, ONE, DWORK, 1 )
CALL DAXPY( N, -TAU, DWORK, 1, A, LDA )
CALL DGER( M, N, -TAU, V, 1, DWORK, 1, B, LDB )
GO TO 210
10 CONTINUE
C
C Special code for 1 x 1 Householder
C
T1 = ONE - TAU
DO 20 J = 1, N
A( 1, J ) = T1*A( 1, J )
20 CONTINUE
GO TO 210
30 CONTINUE
C
C Special code for 2 x 2 Householder
C
V1 = V( 1 )
T1 = TAU*V1
DO 40 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
40 CONTINUE
GO TO 210
50 CONTINUE
C
C Special code for 3 x 3 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
DO 60 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
60 CONTINUE
GO TO 210
70 CONTINUE
C
C Special code for 4 x 4 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
DO 80 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
80 CONTINUE
GO TO 210
90 CONTINUE
C
C Special code for 5 x 5 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
V4 = V( 4 )
T4 = TAU*V4
DO 100 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J ) +
$ V4*B( 4, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
B( 4, J ) = B( 4, J ) - SUM*T4
100 CONTINUE
GO TO 210
110 CONTINUE
C
C Special code for 6 x 6 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
V4 = V( 4 )
T4 = TAU*V4
V5 = V( 5 )
T5 = TAU*V5
DO 120 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J ) +
$ V4*B( 4, J ) + V5*B( 5, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
B( 4, J ) = B( 4, J ) - SUM*T4
B( 5, J ) = B( 5, J ) - SUM*T5
120 CONTINUE
GO TO 210
130 CONTINUE
C
C Special code for 7 x 7 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
V4 = V( 4 )
T4 = TAU*V4
V5 = V( 5 )
T5 = TAU*V5
V6 = V( 6 )
T6 = TAU*V6
DO 140 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J ) +
$ V4*B( 4, J ) + V5*B( 5, J ) + V6*B( 6, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
B( 4, J ) = B( 4, J ) - SUM*T4
B( 5, J ) = B( 5, J ) - SUM*T5
B( 6, J ) = B( 6, J ) - SUM*T6
140 CONTINUE
GO TO 210
150 CONTINUE
C
C Special code for 8 x 8 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
V4 = V( 4 )
T4 = TAU*V4
V5 = V( 5 )
T5 = TAU*V5
V6 = V( 6 )
T6 = TAU*V6
V7 = V( 7 )
T7 = TAU*V7
DO 160 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J ) +
$ V4*B( 4, J ) + V5*B( 5, J ) + V6*B( 6, J ) +
$ V7*B( 7, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
B( 4, J ) = B( 4, J ) - SUM*T4
B( 5, J ) = B( 5, J ) - SUM*T5
B( 6, J ) = B( 6, J ) - SUM*T6
B( 7, J ) = B( 7, J ) - SUM*T7
160 CONTINUE
GO TO 210
170 CONTINUE
C
C Special code for 9 x 9 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
V4 = V( 4 )
T4 = TAU*V4
V5 = V( 5 )
T5 = TAU*V5
V6 = V( 6 )
T6 = TAU*V6
V7 = V( 7 )
T7 = TAU*V7
V8 = V( 8 )
T8 = TAU*V8
DO 180 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J ) +
$ V4*B( 4, J ) + V5*B( 5, J ) + V6*B( 6, J ) +
$ V7*B( 7, J ) + V8*B( 8, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
B( 4, J ) = B( 4, J ) - SUM*T4
B( 5, J ) = B( 5, J ) - SUM*T5
B( 6, J ) = B( 6, J ) - SUM*T6
B( 7, J ) = B( 7, J ) - SUM*T7
B( 8, J ) = B( 8, J ) - SUM*T8
180 CONTINUE
GO TO 210
190 CONTINUE
C
C Special code for 10 x 10 Householder
C
V1 = V( 1 )
T1 = TAU*V1
V2 = V( 2 )
T2 = TAU*V2
V3 = V( 3 )
T3 = TAU*V3
V4 = V( 4 )
T4 = TAU*V4
V5 = V( 5 )
T5 = TAU*V5
V6 = V( 6 )
T6 = TAU*V6
V7 = V( 7 )
T7 = TAU*V7
V8 = V( 8 )
T8 = TAU*V8
V9 = V( 9 )
T9 = TAU*V9
DO 200 J = 1, N
SUM = A( 1, J ) + V1*B( 1, J ) + V2*B( 2, J ) + V3*B( 3, J ) +
$ V4*B( 4, J ) + V5*B( 5, J ) + V6*B( 6, J ) +
$ V7*B( 7, J ) + V8*B( 8, J ) + V9*B( 9, J )
A( 1, J ) = A( 1, J ) - SUM*TAU
B( 1, J ) = B( 1, J ) - SUM*T1
B( 2, J ) = B( 2, J ) - SUM*T2
B( 3, J ) = B( 3, J ) - SUM*T3
B( 4, J ) = B( 4, J ) - SUM*T4
B( 5, J ) = B( 5, J ) - SUM*T5
B( 6, J ) = B( 6, J ) - SUM*T6
B( 7, J ) = B( 7, J ) - SUM*T7
B( 8, J ) = B( 8, J ) - SUM*T8
B( 9, J ) = B( 9, J ) - SUM*T9
200 CONTINUE
210 CONTINUE
RETURN
C *** Last line of MB04OY ***
END
|