summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/mb04ny.f
blob: 211f536c86c2e48c6c4d3cf5099183315026d1ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
      SUBROUTINE MB04NY( M, N, V, INCV, TAU, A, LDA, B, LDB, DWORK )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To apply a real elementary reflector H to a real m-by-(n+1)
C     matrix C = [ A  B ], from the right, where A has one column. H is
C     represented in the form
C                                        ( 1 )
C           H = I - tau * u *u',    u  = (   ),
C                                        ( v )
C     where tau is a real scalar and v is a real n-vector.
C
C     If tau = 0, then H is taken to be the unit matrix.
C
C     In-line code is used if H has order < 11.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of the matrices A and B.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrix B.  N >= 0.
C
C     V       (input) DOUBLE PRECISION array, dimension
C             (1+(N-1)*ABS( INCV ))
C             The vector v in the representation of H.
C
C     INCV    (input) INTEGER
C             The increment between the elements of v.  INCV <> 0.
C
C     TAU     (input) DOUBLE PRECISION
C             The scalar factor of the elementary reflector H.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,1)
C             On entry, the leading M-by-1 part of this array must
C             contain the matrix A.
C             On exit, the leading M-by-1 part of this array contains
C             the updated matrix A (the first column of C * H).
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,M).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading M-by-N part of this array must
C             contain the matrix B. 
C             On exit, the leading M-by-N part of this array contains
C             the updated matrix B (the last n columns of C * H).
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,M).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (M)
C             DWORK is not referenced if H has order less than 11.
C
C     METHOD
C
C     The routine applies the elementary reflector H, taking the special
C     structure of C into account.
C  
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1998.
C     Based on LAPACK routines DLARFX and DLATZM.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, elementary reflector, orthogonal
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INCV, LDA, LDB, M, N
      DOUBLE PRECISION  TAU
C     .. Array Arguments ..
      DOUBLE PRECISION  A( LDA, * ), B( LDB, * ), DWORK( * ), V( * )
C     .. Local Scalars ..
      INTEGER           IV, J
      DOUBLE PRECISION  SUM, T1, T2, T3, T4, T5, T6, T7, T8, T9, V1, V2,
     $                  V3, V4, V5, V6, V7, V8, V9
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMV, DGER
C
C     .. Executable Statements ..
C
      IF( TAU.EQ.ZERO )
     $   RETURN
C
C     Form  C * H, where H has order n+1.
C
      GO TO ( 10, 30, 50, 70, 90, 110, 130, 150,
     $        170, 190 ) N+1
C
C     Code for general N. Compute
C
C     w := C*u,  C := C - tau * w * u'.
C
      CALL DCOPY( M, A, 1, DWORK, 1 )
      CALL DGEMV( 'No transpose', M, N, ONE, B, LDB, V, INCV, ONE,
     $            DWORK, 1 )
      CALL DAXPY( M, -TAU, DWORK, 1, A, 1 )
      CALL DGER( M, N, -TAU, DWORK, 1, V, INCV, B, LDB )
      GO TO 210
   10 CONTINUE
C
C     Special code for 1 x 1 Householder
C
      T1 = ONE - TAU
      DO 20 J = 1, M
         A( J, 1 ) = T1*A( J, 1 )
   20 CONTINUE
      GO TO 210
   30 CONTINUE
C
C     Special code for 2 x 2 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      DO 40 J = 1, M
         SUM = A( J, 1 ) + V1*B( J, 1 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
   40 CONTINUE
      GO TO 210
   50 CONTINUE
C
C     Special code for 3 x 3 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      DO 60 J = 1, M
         SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
   60 CONTINUE
      GO TO 210
   70 CONTINUE
C
C     Special code for 4 x 4 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      DO 80 J = 1, M
         SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
   80 CONTINUE
      GO TO 210
   90 CONTINUE
C
C     Special code for 5 x 5 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      IV = IV + INCV
      V4 = V( IV )
      T4 = TAU*V4
      DO 100 J = 1, M
         SUM = A( J, 1 ) +  V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
     $                      V4*B( J, 4 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
         B( J, 4 ) = B( J, 4 ) - SUM*T4
  100 CONTINUE
      GO TO 210
  110 CONTINUE
C
C     Special code for 6 x 6 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      IV = IV + INCV
      V4 = V( IV )
      T4 = TAU*V4
      IV = IV + INCV
      V5 = V( IV )
      T5 = TAU*V5
      DO 120 J = 1, M
         SUM = A( J, 1 ) +  V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
     $                      V4*B( J, 4 ) + V5*B( J, 5 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
         B( J, 4 ) = B( J, 4 ) - SUM*T4
         B( J, 5 ) = B( J, 5 ) - SUM*T5
  120 CONTINUE
      GO TO 210
  130 CONTINUE
C
C     Special code for 7 x 7 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      IV = IV + INCV
      V4 = V( IV )
      T4 = TAU*V4
      IV = IV + INCV
      V5 = V( IV )
      T5 = TAU*V5
      IV = IV + INCV
      V6 = V( IV )
      T6 = TAU*V6
      DO 140 J = 1, M
         SUM = A( J, 1 ) +  V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
     $                      V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
         B( J, 4 ) = B( J, 4 ) - SUM*T4
         B( J, 5 ) = B( J, 5 ) - SUM*T5
         B( J, 6 ) = B( J, 6 ) - SUM*T6
  140 CONTINUE
      GO TO 210
  150 CONTINUE
C
C     Special code for 8 x 8 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      IV = IV + INCV
      V4 = V( IV )
      T4 = TAU*V4
      IV = IV + INCV
      V5 = V( IV )
      T5 = TAU*V5
      IV = IV + INCV
      V6 = V( IV )
      T6 = TAU*V6
      IV = IV + INCV
      V7 = V( IV )
      T7 = TAU*V7
      DO 160 J = 1, M
         SUM = A( J, 1 ) +  V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
     $                      V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 ) +
     $                      V7*B( J, 7 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
         B( J, 4 ) = B( J, 4 ) - SUM*T4
         B( J, 5 ) = B( J, 5 ) - SUM*T5
         B( J, 6 ) = B( J, 6 ) - SUM*T6
         B( J, 7 ) = B( J, 7 ) - SUM*T7
  160 CONTINUE
      GO TO 210
  170 CONTINUE
C
C     Special code for 9 x 9 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      IV = IV + INCV
      V4 = V( IV )
      T4 = TAU*V4
      IV = IV + INCV
      V5 = V( IV )
      T5 = TAU*V5
      IV = IV + INCV
      V6 = V( IV )
      T6 = TAU*V6
      IV = IV + INCV
      V7 = V( IV )
      T7 = TAU*V7
      IV = IV + INCV
      V8 = V( IV )
      T8 = TAU*V8
      DO 180 J = 1, M
         SUM = A( J, 1 ) +  V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
     $                      V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 ) +
     $                      V7*B( J, 7 ) + V8*B( J, 8 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
         B( J, 4 ) = B( J, 4 ) - SUM*T4
         B( J, 5 ) = B( J, 5 ) - SUM*T5
         B( J, 6 ) = B( J, 6 ) - SUM*T6
         B( J, 7 ) = B( J, 7 ) - SUM*T7
         B( J, 8 ) = B( J, 8 ) - SUM*T8
  180 CONTINUE
      GO TO 210
  190 CONTINUE
C
C     Special code for 10 x 10 Householder
C
      IV = 1
      IF( INCV.LT.0 )
     $   IV = (-N+1)*INCV + 1
      V1 = V( IV )
      T1 = TAU*V1
      IV = IV + INCV
      V2 = V( IV )
      T2 = TAU*V2
      IV = IV + INCV
      V3 = V( IV )
      T3 = TAU*V3
      IV = IV + INCV
      V4 = V( IV )
      T4 = TAU*V4
      IV = IV + INCV
      V5 = V( IV )
      T5 = TAU*V5
      IV = IV + INCV
      V6 = V( IV )
      T6 = TAU*V6
      IV = IV + INCV
      V7 = V( IV )
      T7 = TAU*V7
      IV = IV + INCV
      V8 = V( IV )
      T8 = TAU*V8
      IV = IV + INCV
      V9 = V( IV )
      T9 = TAU*V9
      DO 200 J = 1, M
         SUM = A( J, 1 ) +  V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
     $                      V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 ) +
     $                      V7*B( J, 7 ) + V8*B( J, 8 ) + V9*B( J, 9 )
         A( J, 1 ) = A( J, 1 ) - SUM*TAU
         B( J, 1 ) = B( J, 1 ) - SUM*T1
         B( J, 2 ) = B( J, 2 ) - SUM*T2
         B( J, 3 ) = B( J, 3 ) - SUM*T3
         B( J, 4 ) = B( J, 4 ) - SUM*T4
         B( J, 5 ) = B( J, 5 ) - SUM*T5
         B( J, 6 ) = B( J, 6 ) - SUM*T6
         B( J, 7 ) = B( J, 7 ) - SUM*T7
         B( J, 8 ) = B( J, 8 ) - SUM*T8
         B( J, 9 ) = B( J, 9 ) - SUM*T9
  200 CONTINUE
  210 CONTINUE
      RETURN
C *** Last line of MB04NY ***
      END