summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/mb04kd.f
blob: a6e402d94f57f58b4a7501cbe82b32bce1436c0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
      SUBROUTINE MB04KD( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C, LDC,
     $                   TAU, DWORK )
C
C     RELEASE 3.0, WGS COPYRIGHT 1997.
C
C     PURPOSE
C
C     To calculate a QR factorization of the first block column and
C     apply the orthogonal transformations (from the left) also to the
C     second block column of a structured matrix, as follows
C                          _
C            [ R   0 ]   [ R   C ]
C       Q' * [       ] = [       ]
C            [ A   B ]   [ 0   D ]
C                 _
C     where R and R are upper triangular. The matrix A can be full or
C     upper trapezoidal/triangular. The problem structure is exploited.
C     This computation is useful, for instance, in combined measurement
C     and time update of one iteration of the Kalman filter (square 
C     root information filter).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Indicates if the matrix A is or not triangular as follows:
C             = 'U':  Matrix A is upper trapezoidal/triangular;
C             = 'F':  Matrix A is full.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER                 _
C             The order of the matrices R and R.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrices B, C and D.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrices A, B and D.  P >= 0.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,N)
C             On entry, the leading N-by-N upper triangular part of this
C             array must contain the upper triangular matrix R.
C             On exit, the leading N-by-N upper triangular part of this
C                                                        _
C             array contains the upper triangular matrix R.
C             The strict lower triangular part of this array is not
C             referenced.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, if UPLO = 'F', the leading P-by-N part of this 
C             array must contain the matrix A. If UPLO = 'U', the 
C             leading MIN(P,N)-by-N part of this array must contain the
C             upper trapezoidal (upper triangular if P >= N) matrix A,
C             and the elements below the diagonal are not referenced. 
C             On exit, the leading P-by-N part (upper trapezoidal or
C             triangular, if UPLO = 'U') of this array contains the
C             trailing components (the vectors v, see Method) of the
C             elementary reflectors used in the factorization.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,P).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading P-by-M part of this array must 
C             contain the matrix B. 
C             On exit, the leading P-by-M part of this array contains
C             the computed matrix D.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,P).
C
C     C       (output) DOUBLE PRECISION array, dimension (LDC,M)
C             The leading N-by-M part of this array contains the
C             computed matrix C.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     TAU     (output) DOUBLE PRECISION array, dimension (N)
C             The scalar factors of the elementary reflectors used.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C
C     METHOD
C
C     The routine uses N Householder transformations exploiting the zero
C     pattern of the block matrix.  A Householder matrix has the form
C
C                                     ( 1 ),
C        H  = I - tau *u *u',    u  = ( v ) 
C         i          i  i  i      i   (  i)  
C                                     
C     where v  is a P-vector, if UPLO = 'F', or an min(i,P)-vector, if 
C            i
C     UPLO = 'U'.  The components of v  are stored in the i-th column
C                                     i
C     of A, and tau  is stored in TAU(i).
C                  i
C  
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary reflector, QR factorization, orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER*1       UPLO
      INTEGER           LDA, LDB, LDC, LDR, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
     $                  R(LDR,*), TAU(*)
C     .. Local Scalars ..
      LOGICAL           LUPLO
      INTEGER           I, IM
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMV, DGER, DLARFG, DSCAL
C     .. Intrinsic Functions ..
      INTRINSIC         MIN
C     .. Executable Statements ..
C
      IF( MIN( N, P ).EQ.0 )
     $   RETURN
C
      LUPLO = LSAME( UPLO, 'U' ) 
      IM = P
C
      DO 10 I = 1, N
C
C        Annihilate the I-th column of A and apply the transformations
C        to the entire block matrix, exploiting its structure.
C     
         IF( LUPLO ) IM = MIN( I, P )
         CALL DLARFG( IM+1, R(I,I), A(1,I), 1, TAU(I) )
         IF( TAU(I).NE.ZERO ) THEN
C              
C                                      [ R(I,I+1:N)        0     ]
C           [ w C(I,:) ] := [ 1 v' ] * [                         ]
C                                      [ A(1:IM,I+1:N) B(1:IM,:) ]
C           
            IF( I.LT.N ) THEN
               CALL DCOPY( N-I, R(I,I+1), LDR, DWORK, 1 )
               CALL DGEMV( 'Transpose', IM, N-I, ONE, A(1,I+1), LDA,
     $                     A(1,I), 1, ONE, DWORK, 1 )
            END IF
            CALL DGEMV( 'Transpose', IM, M, ONE, B, LDB, A(1,I), 1,
     $                  ZERO, C(I,1), LDC )
C           
C           [ R(I,I+1:N)      C(I,:)  ]    [ R(I,I+1:N)        0     ]
C           [                         ] := [                         ]
C           [ A(1:IM,I+1:N) D(1:IM,:) ]    [ A(1:IM,I+1:N) B(1:IM,:) ]
C           
C                                                 [ 1 ]
C                                         - tau * [   ] * [ w C(I,:) ]
C                                                 [ v ]
C           
            IF( I.LT.N ) THEN
               CALL DAXPY( N-I, -TAU(I), DWORK, 1, R(I,I+1), LDR )
               CALL DGER( IM, N-I, -TAU(I), A(1,I), 1, DWORK, 1, 
     $                    A(1,I+1), LDA )
            END IF
            CALL DSCAL( M, -TAU(I), C(I,1), LDC )
            CALL DGER( IM, M, ONE, A(1,I), 1, C(I,1), LDC, B, LDB )
         END IF
   10 CONTINUE
C
      RETURN
C *** Last line of MB04KD ***
      END