1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
SUBROUTINE MB03UD( JOBQ, JOBP, N, A, LDA, Q, LDQ, SV, DWORK,
$ LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute all, or part, of the singular value decomposition of a
C real upper triangular matrix.
C
C The N-by-N upper triangular matrix A is factored as A = Q*S*P',
C where Q and P are N-by-N orthogonal matrices and S is an
C N-by-N diagonal matrix with non-negative diagonal elements,
C SV(1), SV(2), ..., SV(N), ordered such that
C
C SV(1) >= SV(2) >= ... >= SV(N) >= 0.
C
C The columns of Q are the left singular vectors of A, the diagonal
C elements of S are the singular values of A and the columns of P
C are the right singular vectors of A.
C
C Either or both of Q and P' may be requested.
C When P' is computed, it is returned in A.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBQ CHARACTER*1
C Specifies whether the user wishes to compute the matrix Q
C of left singular vectors as follows:
C = 'V': Left singular vectors are computed;
C = 'N': No left singular vectors are computed.
C
C JOBP CHARACTER*1
C Specifies whether the user wishes to compute the matrix P'
C of right singular vectors as follows:
C = 'V': Right singular vectors are computed;
C = 'N': No right singular vectors are computed.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N upper triangular part of this
C array must contain the upper triangular matrix A.
C On exit, if JOBP = 'V', the leading N-by-N part of this
C array contains the N-by-N orthogonal matrix P'; otherwise
C the N-by-N upper triangular part of A is used as internal
C workspace. The strictly lower triangular part of A is set
C internally to zero before the reduction to bidiagonal form
C is performed.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
C If JOBQ = 'V', the leading N-by-N part of this array
C contains the orthogonal matrix Q.
C If JOBQ = 'N', Q is not referenced.
C
C LDQ INTEGER
C The leading dimension of array Q.
C LDQ >= 1, and when JOBQ = 'V', LDQ >= MAX(1,N).
C
C SV (output) DOUBLE PRECISION array, dimension (N)
C The N singular values of the matrix A, sorted in
C descending order.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK;
C if INFO > 0, DWORK(2:N) contains the unconverged
C superdiagonal elements of an upper bidiagonal matrix B
C whose diagonal is in SV (not necessarily sorted).
C B satisfies A = Q*B*P', so it has the same singular
C values as A, and singular vectors related by Q and P'.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,5*N).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: the QR algorithm has failed to converge. In this
C case INFO specifies how many superdiagonals did not
C converge (see the description of DWORK).
C This failure is not likely to occur.
C
C METHOD
C
C The routine reduces A to bidiagonal form by means of elementary
C reflectors and then uses the QR algorithm on the bidiagonal form.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute of Informatics, Bucharest, and
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C March 1998. Based on the RASP routine DTRSVD.
C
C REVISIONS
C
C V. Sima, Feb. 2000.
C
C KEYWORDS
C
C Bidiagonalization, orthogonal transformation, singular value
C decomposition, singular values, triangular form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBP, JOBQ
INTEGER INFO, LDA, LDQ, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), Q(LDQ,*), SV(*)
C .. Local Scalars ..
LOGICAL WANTQ, WANTP
INTEGER I, IE, ISCL, ITAUP, ITAUQ, JWORK, MAXWRK,
$ MINWRK, NCOLP, NCOLQ
DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANTR
EXTERNAL DLAMCH, DLANTR, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DBDSQR, DGEBRD, DLACPY, DLASCL, DLASET, DORGBR,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
C .. Executable Statements ..
C
C Check the input scalar arguments.
C
INFO = 0
WANTQ = LSAME( JOBQ, 'V' )
WANTP = LSAME( JOBP, 'V' )
MINWRK = 1
IF( .NOT.WANTQ .AND. .NOT.LSAME( JOBQ, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.WANTP .AND. .NOT.LSAME( JOBP, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) .OR.
$ ( .NOT.WANTQ .AND. LDQ.LT.1 ) ) THEN
INFO = -7
END IF
C
C Compute workspace
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately following
C subroutine, as returned by ILAENV.)
C
IF( INFO.EQ.0 .AND. LDWORK.GE.1 .AND. N.GT.0 ) THEN
MAXWRK = 3*N+2*N*ILAENV( 1, 'DGEBRD', ' ', N, N, -1, -1 )
IF( WANTQ )
$ MAXWRK = MAX( MAXWRK, 3*N+N*
$ ILAENV( 1, 'DORGBR', 'Q', N, N, N, -1 ) )
IF( WANTP )
$ MAXWRK = MAX( MAXWRK, 3*N+N*
$ ILAENV( 1, 'DORGBR', 'P', N, N, N, -1 ) )
MINWRK = 5*N
MAXWRK = MAX( MAXWRK, MINWRK )
DWORK(1) = MAXWRK
END IF
C
IF( LDWORK.LT.MINWRK ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03UD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Get machine constants.
C
EPS = DLAMCH( 'P' )
SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
BIGNUM = ONE / SMLNUM
C
C Scale A if max entry outside range [SMLNUM,BIGNUM].
C
ANRM = DLANTR( 'Max', 'Upper', 'Non-unit', N, N, A, LDA, DUM )
ISCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ISCL = 1
CALL DLASCL( 'Upper', 0, 0, ANRM, SMLNUM, N, N, A, LDA, INFO )
ELSE IF( ANRM.GT.BIGNUM ) THEN
ISCL = 1
CALL DLASCL( 'Upper', 0, 0, ANRM, BIGNUM, N, N, A, LDA, INFO )
END IF
C
C Zero out below.
C
IF ( N.GT.1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, A(2,1), LDA )
C
C Find the singular values and optionally the singular vectors
C of the upper triangular matrix A.
C
IE = 1
ITAUQ = IE + N
ITAUP = ITAUQ + N
JWORK = ITAUP + N
C
C First reduce the matrix to bidiagonal form. The diagonal
C elements will be in SV and the superdiagonals in DWORK(IE).
C (Workspace: need 4*N, prefer 3*N+2*N*NB)
C
CALL DGEBRD( N, N, A, LDA, SV, DWORK(IE), DWORK(ITAUQ),
$ DWORK(ITAUP), DWORK(JWORK), LDWORK-JWORK+1, INFO )
IF( WANTQ ) THEN
C
C Generate the transformation matrix Q corresponding to the
C left singular vectors.
C (Workspace: need 4*N, prefer 3*N+N*NB)
C
NCOLQ = N
CALL DLACPY( 'Lower', N, N, A, LDA, Q, LDQ )
CALL DORGBR( 'Q', N, N, N, Q, LDQ, DWORK(ITAUQ), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
ELSE
NCOLQ = 0
END IF
IF( WANTP ) THEN
C
C Generate the transformation matrix P' corresponding to the
C right singular vectors.
C (Workspace: need 4*N, prefer 3*N+N*NB)
C
NCOLP = N
CALL DORGBR( 'P', N, N, N, A, LDA, DWORK(ITAUP), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
ELSE
NCOLP = 0
END IF
JWORK = IE + N
C
C Perform bidiagonal QR iteration, to obtain all or part of the
C singular value decomposition of A.
C (Workspace: need 5*N)
C
CALL DBDSQR( 'U', N, NCOLP, NCOLQ, 0, SV, DWORK(IE), A, LDA,
$ Q, LDQ, DUM, 1, DWORK(JWORK), INFO )
C
C If DBDSQR failed to converge, copy unconverged superdiagonals
C to DWORK(2:N).
C
IF( INFO.NE.0 ) THEN
DO 10 I = N - 1, 1, -1
DWORK(I+1) = DWORK(I+IE-1)
10 CONTINUE
END IF
C
C Undo scaling if necessary.
C
IF( ISCL.EQ.1 ) THEN
IF( ANRM.GT.BIGNUM )
$ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, N, 1, SV, N, INFO )
IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
$ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, N-1, 1, DWORK(2), N,
$ INFO )
IF( ANRM.LT.SMLNUM )
$ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, N, 1, SV, N, INFO )
IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
$ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, N-1, 1, DWORK(2), N,
$ INFO )
END IF
C
C Return optimal workspace in DWORK(1).
C
DWORK(1) = MAXWRK
C
RETURN
C *** Last line of MB03UD ***
END
|