summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/mb01ry.f
blob: 6c7901b51f63a3dcb1b7b303a7c3d485e2046c25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      SUBROUTINE MB01RY( SIDE, UPLO, TRANS, M, ALPHA, BETA, R, LDR, H,
     $                   LDH, B, LDB, DWORK, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To compute either the upper or lower triangular part of one of the
C     matrix formulas
C        _
C        R = alpha*R + beta*op( H )*B,                               (1)
C        _
C        R = alpha*R + beta*B*op( H ),                               (2)
C                                                    _     
C     where alpha and beta are scalars, H, B, R, and R are m-by-m
C     matrices, H is an upper Hessenberg matrix, and op( H ) is one of
C     
C        op( H ) = H   or   op( H ) = H',  the transpose of H.
C     
C     The result is overwritten on R. 
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     SIDE    CHARACTER*1
C             Specifies whether the Hessenberg matrix H appears on the 
C             left or right in the matrix product as follows:
C                     _                           
C             = 'L':  R = alpha*R + beta*op( H )*B;
C                     _                           
C             = 'R':  R = alpha*R + beta*B*op( H ).
C            
C     UPLO    CHARACTER*1                               _
C             Specifies which triangles of the matrices R and R are
C             computed and given, respectively, as follows:
C             = 'U':  the upper triangular part;
C             = 'L':  the lower triangular part.
C            
C     TRANS   CHARACTER*1
C             Specifies the form of op( H ) to be used in the matrix
C             multiplication as follows:
C             = 'N':  op( H ) = H;
C             = 'T':  op( H ) = H';
C             = 'C':  op( H ) = H'.
C            
C     Input/Output Parameters
C
C     M       (input) INTEGER           _
C             The order of the matrices R, R, H and B.  M >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then R need not be  
C             set before entry.
C            
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero then H and B are not
C             referenced.
C            
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C             On entry with UPLO = 'U', the leading M-by-M upper
C             triangular part of this array must contain the upper
C             triangular part of the matrix R; the strictly lower
C             triangular part of the array is not referenced.
C             On entry with UPLO = 'L', the leading M-by-M lower
C             triangular part of this array must contain the lower
C             triangular part of the matrix R; the strictly upper
C             triangular part of the array is not referenced.
C             On exit, the leading M-by-M upper triangular part (if 
C             UPLO = 'U'), or lower triangular part (if UPLO = 'L') of
C             this array contains the corresponding triangular part of
C                                 _
C             the computed matrix R. 
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,M).
C
C     H       (input) DOUBLE PRECISION array, dimension (LDH,M)
C             On entry, the leading M-by-M upper Hessenberg part of
C             this array must contain the upper Hessenberg part of the
C             matrix H.
C             The elements below the subdiagonal are not referenced,
C             except possibly for those in the first column, which
C             could be overwritten, but are restored on exit.
C
C     LDH     INTEGER
C             The leading dimension of array H.  LDH >= MAX(1,M).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading M-by-M part of this array must
C             contain the matrix B.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,M).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             LDWORK >= M, if  beta <> 0 and SIDE = 'L';
C             LDWORK >= 0, if  beta =  0 or  SIDE = 'R'.
C             This array is not referenced when beta = 0 or SIDE = 'R'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix expression is efficiently evaluated taking the
C     Hessenberg/triangular structure into account. BLAS 2 operations
C     are used. A block algorithm can be constructed; it can use BLAS 3
C     GEMM operations for most computations, and calls of this BLAS 2
C     algorithm for computing the triangles.
C
C     FURTHER COMMENTS
C
C     The main application of this routine is when the result should
C     be a symmetric matrix, e.g., when B = X*op( H )', for (1), or
C     B = op( H )'*X, for (2), where B is already available and X = X'.
C     
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1999.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix algebra, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         SIDE, TRANS, UPLO
      INTEGER           INFO, LDB, LDH, LDR, M
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  B(LDB,*), DWORK(*), H(LDH,*), R(LDR,*)
C     .. Local Scalars ..
      LOGICAL           LSIDE, LTRANS, LUPLO
      INTEGER           I, J
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DDOT
      EXTERNAL          DDOT, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV, DLASCL, DLASET, DSCAL, DSWAP,
     $                  DTRMV, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO   = 0
      LSIDE  = LSAME( SIDE,  'L' )
      LUPLO  = LSAME( UPLO,  'U' )
      LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
      IF(      ( .NOT.LSIDE  ).AND.( .NOT.LSAME( SIDE,  'R' ) ) )THEN
         INFO = -1
      ELSE IF( ( .NOT.LUPLO  ).AND.( .NOT.LSAME( UPLO,  'L' ) ) )THEN
         INFO = -2
      ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( LDH.LT.MAX( 1, M ) ) THEN
         INFO = -10    
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -12
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01RY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( M.EQ.0 ) 
     $   RETURN
C
      IF ( BETA.EQ.ZERO ) THEN
         IF ( ALPHA.EQ.ZERO ) THEN
C
C           Special case when both alpha = 0 and beta = 0.
C
            CALL DLASET( UPLO, M, M, ZERO, ZERO, R, LDR )
         ELSE
C
C           Special case beta = 0.
C
            IF ( ALPHA.NE.ONE ) 
     $         CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M, M, R, LDR, INFO )
         END IF
         RETURN
      END IF
C     
C     General case: beta <> 0.
C     Compute the required triangle of (1) or (2) using BLAS 2 
C     operations. 
C
      IF( LSIDE ) THEN
C
C        To avoid repeated references to the subdiagonal elements of H, 
C        these are swapped with the corresponding elements of H in the
C        first column, and are finally restored.
C 
         IF( M.GT.2 ) 
     $      CALL DSWAP( M-2, H( 3, 2 ), LDH+1, H( 3, 1 ), 1 )
C
         IF( LUPLO ) THEN
            IF ( LTRANS ) THEN
C
               DO 20 J = 1, M
C              
C                 Multiply the transposed upper triangle of the leading
C                 j-by-j submatrix of H by the leading part of the j-th
C                 column of B.
C
                  CALL DCOPY( J, B( 1, J ), 1, DWORK, 1 )
                  CALL DTRMV( 'Upper', TRANS, 'Non-unit', J, H, LDH,
     $                        DWORK, 1 )
C              
C                 Add the contribution of the subdiagonal of H to
C                 the j-th column of the product.
C              
                  DO 10 I = 1, MIN( J, M - 1 )
                     R( I, J ) = ALPHA*R( I, J ) + BETA*( DWORK( I ) +
     $                           H( I+1, 1 )*B( I+1, J ) )
   10             CONTINUE
C
   20          CONTINUE
C
               R( M, M ) = ALPHA*R( M, M ) + BETA*DWORK( M )
C     
            ELSE
C     
               DO 40 J = 1, M
C              
C                 Multiply the upper triangle of the leading j-by-j
C                 submatrix of H by the leading part of the j-th column
C                 of B.
C
                  CALL DCOPY( J, B( 1, J ), 1, DWORK, 1 )
                  CALL DTRMV( 'Upper', TRANS, 'Non-unit', J, H, LDH,
     $                        DWORK, 1 )
                  IF( J.LT.M ) THEN
C
C                    Multiply the remaining right part of the leading
C                    j-by-M submatrix of H by the trailing part of the
C                    j-th column of B.
C                    
                     CALL DGEMV( TRANS, J, M-J, BETA, H( 1, J+1 ), LDH,
     $                           B( J+1, J ), 1, ALPHA, R( 1, J ), 1 )
                  ELSE
                     CALL DSCAL( M, ALPHA, R( 1, M ), 1 ) 
                  END IF
C              
C                 Add the contribution of the subdiagonal of H to
C                 the j-th column of the product.
C
                  R( 1, J ) = R( 1, J ) + BETA*DWORK( 1 )
C              
                  DO 30 I = 2, J
                     R( I, J ) = R( I, J ) + BETA*( DWORK( I ) +
     $                           H( I, 1 )*B( I-1, J ) )
   30             CONTINUE
C
   40          CONTINUE
C
            END IF
C
         ELSE
C
            IF ( LTRANS ) THEN
C
               DO 60 J = M, 1, -1
C              
C                 Multiply the transposed upper triangle of the trailing
C                 (M-j+1)-by-(M-j+1) submatrix of H by the trailing part
C                 of the j-th column of B.
C
                  CALL DCOPY( M-J+1, B( J, J ), 1, DWORK( J ), 1 )
                  CALL DTRMV( 'Upper', TRANS, 'Non-unit', M-J+1,
     $                        H( J, J ), LDH, DWORK( J ), 1 )
                  IF( J.GT.1 ) THEN
C
C                    Multiply the remaining left part of the trailing 
C                    (M-j+1)-by-(j-1) submatrix of H' by the leading
C                    part of the j-th column of B.
C                    
                     CALL DGEMV( TRANS, J-1, M-J+1, BETA, H( 1, J ),
     $                           LDH, B( 1, J ), 1, ALPHA, R( J, J ), 
     $                           1 )
                  ELSE
                     CALL DSCAL( M, ALPHA, R( 1, 1 ), 1 ) 
                  END IF
C              
C                 Add the contribution of the subdiagonal of H to
C                 the j-th column of the product.
C
                  DO 50 I = J, M - 1
                     R( I, J ) = R( I, J ) + BETA*( DWORK( I ) +
     $                           H( I+1, 1 )*B( I+1, J ) )
   50             CONTINUE
C
                  R( M, J ) = R( M, J ) + BETA*DWORK( M )
   60          CONTINUE
C              
            ELSE
C
               DO 80 J = M, 1, -1
C              
C                 Multiply the upper triangle of the trailing
C                 (M-j+1)-by-(M-j+1) submatrix of H by the trailing
C                 part of the j-th column of B.
C
                  CALL DCOPY( M-J+1, B( J, J ), 1, DWORK( J ), 1 )
                  CALL DTRMV( 'Upper', TRANS, 'Non-unit', M-J+1,
     $                        H( J, J ), LDH, DWORK( J ), 1 )
C              
C                 Add the contribution of the subdiagonal of H to
C                 the j-th column of the product.
C                 
                  DO 70 I = MAX( J, 2 ), M
                     R( I, J ) = ALPHA*R( I, J ) + BETA*( DWORK( I )
     $                               + H( I, 1 )*B( I-1, J ) )
   70             CONTINUE
C
   80          CONTINUE
C
               R( 1, 1 ) = ALPHA*R( 1, 1 ) + BETA*DWORK( 1 )
C
            END IF
         END IF
C     
         IF( M.GT.2 ) 
     $      CALL DSWAP( M-2, H( 3, 2 ), LDH+1, H( 3, 1 ), 1 )
C
      ELSE
C     
C        Row-wise calculations are used for H, if SIDE = 'R' and 
C        TRANS = 'T'.
C           
         IF( LUPLO ) THEN
            IF( LTRANS ) THEN
               R( 1, 1 ) = ALPHA*R( 1, 1 ) + 
     $                     BETA*DDOT( M, B, LDB, H, LDH )
C
               DO 90 J = 2, M
                  CALL DGEMV( 'NoTranspose', J, M-J+2, BETA,
     $                        B( 1, J-1 ), LDB, H( J, J-1 ), LDH,
     $                        ALPHA, R( 1, J ), 1 )
   90          CONTINUE
C
            ELSE
C
               DO 100 J = 1, M - 1
                  CALL DGEMV( 'NoTranspose', J, J+1, BETA, B, LDB,
     $                        H( 1, J ), 1, ALPHA, R( 1, J ), 1 )
  100          CONTINUE
C
               CALL DGEMV( 'NoTranspose', M, M, BETA, B, LDB,
     $                     H( 1, M ), 1, ALPHA, R( 1, M ), 1 )
C     
            END IF
C
         ELSE
C
            IF( LTRANS ) THEN
C
               CALL DGEMV( 'NoTranspose', M, M, BETA, B, LDB, H, LDH,
     $                     ALPHA, R( 1, 1 ), 1 )
C
               DO 110 J = 2, M
                  CALL DGEMV( 'NoTranspose', M-J+1, M-J+2, BETA,
     $                        B( J, J-1 ), LDB, H( J, J-1 ), LDH, ALPHA,
     $                        R( J, J ), 1 )
  110          CONTINUE
C     
            ELSE
C     
               DO 120 J = 1, M - 1
                  CALL DGEMV( 'NoTranspose', M-J+1, J+1, BETA,
     $                        B( J, 1 ), LDB, H( 1, J ), 1, ALPHA,
     $                        R( J, J ), 1 )
  120          CONTINUE
C
               R( M, M ) = ALPHA*R( M, M ) + 
     $                     BETA*DDOT( M, B( M, 1 ), LDB, H( 1, M ), 1 )
C     
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of MB01RY ***
      END