summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/mb01rx.f
blob: 8e7038a8d459f922bcbbaa454c5461338e341b79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
      SUBROUTINE MB01RX( SIDE, UPLO, TRANS, M, N, ALPHA, BETA, R, LDR,
     $                   A, LDA, B, LDB, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To compute either the upper or lower triangular part of one of the
C     matrix formulas
C        _
C        R = alpha*R + beta*op( A )*B,                               (1)
C        _
C        R = alpha*R + beta*B*op( A ),                               (2)
C                                             _     
C     where alpha and beta are scalars, R and R are m-by-m matrices,
C     op( A ) and B are m-by-n and n-by-m matrices for (1), or n-by-m
C     and m-by-n matrices for (2), respectively, and op( A ) is one of
C     
C        op( A ) = A   or   op( A ) = A',  the transpose of A.
C     
C     The result is overwritten on R. 
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     SIDE    CHARACTER*1
C             Specifies whether the matrix A appears on the left or
C             right in the matrix product as follows:
C                     _                           
C             = 'L':  R = alpha*R + beta*op( A )*B;
C                     _                           
C             = 'R':  R = alpha*R + beta*B*op( A ).
C            
C     UPLO    CHARACTER*1                               _
C             Specifies which triangles of the matrices R and R are
C             computed and given, respectively, as follows:
C             = 'U':  the upper triangular part;
C             = 'L':  the lower triangular part.
C            
C     TRANS   CHARACTER*1
C             Specifies the form of op( A ) to be used in the matrix
C             multiplication as follows:
C             = 'N':  op( A ) = A;
C             = 'T':  op( A ) = A';
C             = 'C':  op( A ) = A'.
C            
C     Input/Output Parameters
C
C     M       (input) INTEGER           _
C             The order of the matrices R and R, the number of rows of
C             the matrix op( A ) and the number of columns of the 
C             matrix B, for SIDE = 'L', or the number of rows of the
C             matrix B and the number of columns of the matrix op( A ), 
C             for SIDE = 'R'.  M >= 0.
C
C     N       (input) INTEGER
C             The number of rows of the matrix B and the number of 
C             columns of the matrix op( A ), for SIDE = 'L', or the 
C             number of rows of the matrix op( A ) and the number of
C             columns of the matrix B, for SIDE = 'R'.  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then R need not be  
C             set before entry.
C            
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero then A and B are not
C             referenced.
C            
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C             On entry with UPLO = 'U', the leading M-by-M upper
C             triangular part of this array must contain the upper
C             triangular part of the matrix R; the strictly lower
C             triangular part of the array is not referenced.
C             On entry with UPLO = 'L', the leading M-by-M lower
C             triangular part of this array must contain the lower
C             triangular part of the matrix R; the strictly upper
C             triangular part of the array is not referenced.
C             On exit, the leading M-by-M upper triangular part (if 
C             UPLO = 'U'), or lower triangular part (if UPLO = 'L') of
C             this array contains the corresponding triangular part of
C                                 _
C             the computed matrix R. 
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,M).
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,k), where
C             k = N  when  SIDE = 'L', and TRANS = 'N', or 
C                          SIDE = 'R', and TRANS = 'T'; 
C             k = M  when  SIDE = 'R', and TRANS = 'N', or 
C                          SIDE = 'L', and TRANS = 'T'.
C             On entry, if SIDE = 'L', and TRANS = 'N', or 
C                          SIDE = 'R', and TRANS = 'T', 
C             the leading M-by-N part of this array must contain the
C             matrix A.
C             On entry, if SIDE = 'R', and TRANS = 'N', or 
C                          SIDE = 'L', and TRANS = 'T', 
C             the leading N-by-M part of this array must contain the
C             matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,l), where
C             l = M  when  SIDE = 'L', and TRANS = 'N', or 
C                          SIDE = 'R', and TRANS = 'T'; 
C             l = N  when  SIDE = 'R', and TRANS = 'N', or 
C                          SIDE = 'L', and TRANS = 'T'.
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,p), where
C             p = M  when  SIDE = 'L'; 
C             p = N  when  SIDE = 'R'.
C             On entry, the leading N-by-M part, if SIDE = 'L', or 
C             M-by-N part, if SIDE = 'R', of this array must contain the
C             matrix B.
C
C     LDB     INTEGER
C             The leading dimension of array B.  
C             LDB >= MAX(1,N), if SIDE = 'L';
C             LDB >= MAX(1,M), if SIDE = 'R'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix expression is evaluated taking the triangular
C     structure into account. BLAS 2 operations are used. A block
C     algorithm can be easily constructed; it can use BLAS 3 GEMM
C     operations for most computations, and calls of this BLAS 2
C     algorithm for computing the triangles.
C
C     FURTHER COMMENTS
C
C     The main application of this routine is when the result should
C     be a symmetric matrix, e.g., when B = X*op( A )', for (1), or
C     B = op( A )'*X, for (2), where B is already available and X = X'.
C     
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1999.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix algebra, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         SIDE, TRANS, UPLO
      INTEGER           INFO, LDA, LDB, LDR, M, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), R(LDR,*)
C     .. Local Scalars ..
      LOGICAL           LSIDE, LTRANS, LUPLO
      INTEGER           J
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMV, DLASCL, DLASET, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO   = 0
      LSIDE  = LSAME( SIDE,  'L' )
      LUPLO  = LSAME( UPLO,  'U' )
      LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
      IF(      ( .NOT.LSIDE  ).AND.( .NOT.LSAME( SIDE,  'R' ) ) )THEN
         INFO = -1
      ELSE IF( ( .NOT.LUPLO  ).AND.( .NOT.LSAME( UPLO,  'L' ) ) )THEN
         INFO = -2
      ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF( LDA.LT.1 .OR. 
     $   ( ( (      LSIDE .AND. .NOT.LTRANS ) .OR.
     $       ( .NOT.LSIDE .AND.      LTRANS ) ) .AND. LDA.LT.M ) .OR.
     $   ( ( (      LSIDE .AND.      LTRANS ) .OR.
     $       ( .NOT.LSIDE .AND. .NOT.LTRANS ) ) .AND. LDA.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDB.LT.1 .OR. 
     $       (      LSIDE .AND. LDB.LT.N ) .OR.
     $       ( .NOT.LSIDE .AND. LDB.LT.M ) ) THEN
         INFO = -13
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01RX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( M.EQ.0 ) 
     $   RETURN
C
      IF ( BETA.EQ.ZERO ) THEN
         IF ( ALPHA.EQ.ZERO ) THEN
C
C           Special case when both alpha = 0 and beta = 0.
C
            CALL DLASET( UPLO, M, M, ZERO, ZERO, R, LDR )
         ELSE
C
C           Special case beta = 0.
C
            IF ( ALPHA.NE.ONE ) 
     $         CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M, M, R, LDR, INFO )
         END IF
         RETURN
      END IF
C
      IF ( N.EQ.0 ) 
     $   RETURN
C     
C     General case: beta <> 0.
C     Compute the required triangle of (1) or (2) using BLAS 2 
C     operations.
C
      IF( LSIDE ) THEN
         IF( LUPLO ) THEN
            IF ( LTRANS ) THEN
               DO 10 J = 1, M
                  CALL DGEMV( TRANS, N, J, BETA, A, LDA, B(1,J), 1,
     $                        ALPHA, R(1,J), 1 )
   10          CONTINUE
            ELSE
               DO 20 J = 1, M
                  CALL DGEMV( TRANS, J, N, BETA, A, LDA, B(1,J), 1,
     $                        ALPHA, R(1,J), 1 )
   20          CONTINUE
            END IF
         ELSE
            IF ( LTRANS ) THEN
               DO 30 J = 1, M
                  CALL DGEMV( TRANS, N, M-J+1, BETA, A(1,J), LDA,
     $                        B(1,J), 1, ALPHA, R(J,J), 1 )
   30          CONTINUE
            ELSE
               DO 40 J = 1, M
                  CALL DGEMV( TRANS, M-J+1, N, BETA, A(J,1), LDA,
     $                        B(1,J), 1, ALPHA, R(J,J), 1 )
   40          CONTINUE
            END IF
         END IF
C
      ELSE
         IF( LUPLO ) THEN
            IF( LTRANS ) THEN
               DO 50 J = 1, M
                  CALL DGEMV( 'NoTranspose', J, N, BETA, B, LDB, A(J,1),
     $                        LDA, ALPHA, R(1,J), 1 )
   50          CONTINUE
            ELSE
               DO 60 J = 1, M
                  CALL DGEMV( 'NoTranspose', J, N, BETA, B, LDB, A(1,J),
     $                        1, ALPHA, R(1,J), 1 )
   60          CONTINUE
            END IF
         ELSE
            IF( LTRANS ) THEN
               DO 70 J = 1, M
                  CALL DGEMV( 'NoTranspose', M-J+1, N, BETA, B(J,1),
     $                        LDB, A(J,1), LDA, ALPHA, R(J,J), 1 )
   70           CONTINUE
            ELSE
               DO 80 J = 1, M
                  CALL DGEMV( 'NoTranspose', M-J+1, N, BETA, B(J,1),
     $                        LDB, A(1,J), 1, ALPHA, R(J,J), 1 )
   80          CONTINUE
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of MB01RX ***
      END