summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/mb01rd.f
blob: efa36ccac5e9589a36b04eb1e08e4cccbdbb1309 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
      SUBROUTINE MB01RD( UPLO, TRANS, M, N, ALPHA, BETA, R, LDR, A, LDA,
     $                   X, LDX, DWORK, LDWORK, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To compute the matrix formula
C        _
C        R = alpha*R + beta*op( A )*X*op( A )',
C                                                 _     
C     where alpha and beta are scalars, R, X, and R are symmetric 
C     matrices, A is a general matrix, and op( A ) is one of
C     
C        op( A ) = A   or   op( A ) = A'.
C     
C     The result is overwritten on R. 
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1                                         _
C             Specifies which triangles of the symmetric matrices R, R,
C             and X are given as follows:
C             = 'U':  the upper triangular part is given;
C             = 'L':  the lower triangular part is given.
C            
C     TRANS   CHARACTER*1
C             Specifies the form of op( A ) to be used in the matrix
C             multiplication as follows:
C             = 'N':  op( A ) = A;
C             = 'T':  op( A ) = A';
C             = 'C':  op( A ) = A'.
C            
C     Input/Output Parameters
C
C     M       (input) INTEGER           _
C             The order of the matrices R and R and the number of rows
C             of the matrix op( A ).  M >= 0.
C
C     N       (input) INTEGER
C             The order of the matrix X and the number of columns of the
C             the matrix op( A ).  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then R need not be  
C             set before entry, except when R is identified with X in
C             the call (which is possible only in this case).
C            
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero then A and X are not
C             referenced.
C            
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C             On entry with UPLO = 'U', the leading M-by-M upper
C             triangular part of this array must contain the upper
C             triangular part of the symmetric matrix R; the strictly
C             lower triangular part of the array is used as workspace.
C             On entry with UPLO = 'L', the leading M-by-M lower
C             triangular part of this array must contain the lower
C             triangular part of the symmetric matrix R; the strictly
C             upper triangular part of the array is used as workspace.
C             On exit, the leading M-by-M upper triangular part (if 
C             UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of 
C             this array contains the corresponding triangular part of
C                                 _
C             the computed matrix R. If beta <> 0, the remaining
C             strictly triangular part of this array contains the 
C             corresponding part of the matrix expression 
C             beta*op( A )*T*op( A )', where T is the triangular matrix
C             defined in the Method section.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,M).
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,k)
C             where k is N when TRANS = 'N' and is M when TRANS = 'T' or
C             TRANS = 'C'.
C             On entry with TRANS = 'N', the leading M-by-N part of this
C             array must contain the matrix A.
C             On entry with TRANS = 'T' or TRANS = 'C', the leading
C             N-by-M part of this array must contain the matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,l),
C             where l is M when TRANS = 'N' and is N when TRANS = 'T' or
C             TRANS = 'C'.
C
C     X       (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C             On entry, if UPLO = 'U', the leading N-by-N upper
C             triangular part of this array must contain the upper
C             triangular part of the symmetric matrix X and the strictly
C             lower triangular part of the array is not referenced.
C             On entry, if UPLO = 'L', the leading N-by-N lower
C             triangular part of this array must contain the lower
C             triangular part of the symmetric matrix X and the strictly
C             upper triangular part of the array is not referenced.
C             On exit, each diagonal element of this array has half its
C             input value, but the other elements are not modified.
C
C     LDX     INTEGER
C             The leading dimension of array X.  LDX >= MAX(1,N).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, the leading M-by-N part of this
C             array (with the leading dimension MAX(1,M)) returns the
C             matrix product beta*op( A )*T, where T is the triangular
C             matrix defined in the Method section.
C             This array is not referenced when beta = 0.
C
C     LDWORK  The length of the array DWORK.
C             LDWORK >= MAX(1,M*N), if  beta <> 0;
C             LDWORK >= 1,          if  beta =  0.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -k, the k-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix expression is efficiently evaluated taking the symmetry
C     into account. Specifically, let X = T + T', with T an upper or
C     lower triangular matrix, defined by 
C
C        T = triu( X ) - (1/2)*diag( X ),  if UPLO = 'U',
C        T = tril( X ) - (1/2)*diag( X ),  if UPLO = 'L',
C     
C     where triu, tril, and diag denote the upper triangular part, lower
C     triangular part, and diagonal part of X, respectively. Then,
C
C        op( A )*X*op( A )' = B + B',
C     
C     where B := op( A )*T*op( A )'. Matrix B is not symmetric, but it
C     can be written as tri( B ) + stri( B ), where tri denotes the
C     triangular part specified by UPLO, and stri denotes the remaining
C     strictly triangular part. Let R = V + V', with V defined as T
C     above. Then, the required triangular part of the result can be
C     written as 
C
C        alpha*V + beta*tri( B )  + beta*(stri( B ))' +
C                 alpha*diag( V ) + beta*diag( tri( B ) ).
C
C     REFERENCES
C
C     None.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires approximately
C
C                   2         2
C        3/2 x M x N + 1/2 x M 
C
C     operations.
C
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix algebra, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, HALF
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
C     .. Scalar Arguments ..
      CHARACTER*1       TRANS, UPLO
      INTEGER           INFO, LDA, LDR, LDWORK, LDX, M, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), R(LDR,*), X(LDX,*)
C     .. Local Scalars ..
      CHARACTER*12      NTRAN
      LOGICAL           LTRANS, LUPLO
      INTEGER           J, JWORK, LDW, NROWA
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMM, DLACPY, DLASCL, DLASET,
     $                  DSCAL, DTRMM, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      LUPLO  = LSAME( UPLO,  'U' )
      LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
      IF ( LTRANS ) THEN
         NROWA = N
         NTRAN = 'No transpose'
      ELSE
         NROWA = M
         NTRAN = 'Transpose'
      END IF
C
      LDW = MAX( 1, M )
C
      IF(      ( .NOT.LUPLO  ).AND.( .NOT.LSAME( UPLO,  'L' ) ) )THEN
         INFO = -1
      ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDR.LT.LDW ) THEN
         INFO = -8
      ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
         INFO = -10    
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( ( BETA.NE.ZERO .AND. LDWORK.LT.MAX( 1, M*N ) ) 
     $     .OR.( BETA.EQ.ZERO .AND. LDWORK.LT.1 ) ) THEN
         INFO = -14
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01RD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MAX( N, M ).EQ.0 ) 
     $   RETURN
C
      IF ( BETA.EQ.ZERO ) THEN
         IF ( ALPHA.EQ.ZERO ) THEN
C
C           Special case when both alpha = 0 and beta = 0.
C
            CALL DLASET( UPLO, M, M, ZERO, ZERO, R, LDR )
         ELSE
C
C           Special case beta = 0.
C
            IF ( ALPHA.NE.ONE ) 
     $         CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M, M, R, LDR, INFO )
         END IF
         RETURN
      END IF
C     
C     General case: beta <> 0. Efficiently compute 
C        _
C        R = alpha*R + beta*op( A )*X*op( A )',
C
C     as described in the Method section.
C
C     Compute W = beta*op( A )*T in DWORK.
C     Workspace: need M*N.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code.)
C
      IF( LTRANS ) THEN
         JWORK = 1
C
         DO 10 J = 1, N
            CALL DCOPY( M, A(J,1), LDA, DWORK(JWORK), 1 )
            JWORK = JWORK + LDW
 10      CONTINUE
C    
      ELSE
         CALL DLACPY( 'Full', M, N, A, LDA, DWORK, LDW )
      END IF
C
      CALL DSCAL( N, HALF, X, LDX+1 )
      CALL DTRMM( 'Right', UPLO, 'No transpose', 'Non-unit', M, N, BETA,
     $            X, LDX, DWORK, LDW )
C
C     Compute Y = alpha*V + W*op( A )' in R. First, set to zero the
C     strictly triangular part of R not specified by UPLO. That part
C     will then contain beta*stri( B ).
C
      IF ( ALPHA.NE.ZERO ) THEN
         IF ( M.GT.1 ) THEN
            IF ( LUPLO ) THEN
               CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, R(2,1), LDR )
            ELSE
               CALL DLASET( 'Upper', M-1, M-1, ZERO, ZERO, R(1,2), LDR )
            END IF
         END IF
         CALL DSCAL( M, HALF, R, LDR+1 )
      END IF
C
      CALL DGEMM( 'No transpose', NTRAN, M, M, N, ONE, DWORK, LDW, A,
     $            LDA, ALPHA, R, LDR )
C
C     Add the term corresponding to B', with B = op( A )*T*op( A )'.
C
      IF( LUPLO ) THEN
C
         DO 20 J = 1, M
            CALL DAXPY( J, ONE, R(J,1), LDR, R(1,J), 1 ) 
   20    CONTINUE
C
      ELSE
C
         DO 30 J = 1, M
            CALL DAXPY( J, ONE, R(1,J), 1, R(J,1), LDR ) 
 30      CONTINUE
C    
      END IF
C
      RETURN
C *** Last line of MB01RD ***
      END