1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
SUBROUTINE MB01QD( TYPE, M, N, KL, KU, CFROM, CTO, NBL, NROWS, A,
$ LDA, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To multiply the M by N real matrix A by the real scalar CTO/CFROM.
C This is done without over/underflow as long as the final result
C CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
C A may be full, (block) upper triangular, (block) lower triangular,
C (block) upper Hessenberg, or banded.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYPE CHARACTER*1
C TYPE indices the storage type of the input matrix.
C = 'G': A is a full matrix.
C = 'L': A is a (block) lower triangular matrix.
C = 'U': A is a (block) upper triangular matrix.
C = 'H': A is a (block) upper Hessenberg matrix.
C = 'B': A is a symmetric band matrix with lower bandwidth
C KL and upper bandwidth KU and with the only the
C lower half stored.
C = 'Q': A is a symmetric band matrix with lower bandwidth
C KL and upper bandwidth KU and with the only the
C upper half stored.
C = 'Z': A is a band matrix with lower bandwidth KL and
C upper bandwidth KU.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C KL (input) INTEGER
C The lower bandwidth of A. Referenced only if TYPE = 'B',
C 'Q' or 'Z'.
C
C KU (input) INTEGER
C The upper bandwidth of A. Referenced only if TYPE = 'B',
C 'Q' or 'Z'.
C
C CFROM (input) DOUBLE PRECISION
C CTO (input) DOUBLE PRECISION
C The matrix A is multiplied by CTO/CFROM. A(I,J) is
C computed without over/underflow if the final result
C CTO*A(I,J)/CFROM can be represented without over/
C underflow. CFROM must be nonzero.
C
C NBL (input) INTEGER
C The number of diagonal blocks of the matrix A, if it has a
C block structure. To specify that matrix A has no block
C structure, set NBL = 0. NBL >= 0.
C
C NROWS (input) INTEGER array, dimension max(1,NBL)
C NROWS(i) contains the number of rows and columns of the
C i-th diagonal block of matrix A. The sum of the values
C NROWS(i), for i = 1: NBL, should be equal to min(M,N).
C The array NROWS is not referenced if NBL = 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C The matrix to be multiplied by CTO/CFROM. See TYPE for
C the storage type.
C
C LDA (input) INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C Error Indicator
C
C INFO INTEGER
C Not used in this implementation.
C
C METHOD
C
C Matrix A is multiplied by the real scalar CTO/CFROM, taking into
C account the specified storage mode of the matrix.
C MB01QD is a version of the LAPACK routine DLASCL, modified for
C dealing with block triangular, or block Hessenberg matrices.
C For efficiency, no tests of the input scalar parameters are
C performed.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C ..
C .. Scalar Arguments ..
CHARACTER TYPE
INTEGER INFO, KL, KU, LDA, M, N, NBL
DOUBLE PRECISION CFROM, CTO
C ..
C .. Array Arguments ..
INTEGER NROWS ( * )
DOUBLE PRECISION A( LDA, * )
C ..
C .. Local Scalars ..
LOGICAL DONE, NOBLC
INTEGER I, IFIN, ITYPE, J, JFIN, JINI, K, K1, K2, K3,
$ K4
DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, DLAMCH
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
C ..
C .. Executable Statements ..
C
IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE IF( LSAME( TYPE, 'B' ) ) THEN
ITYPE = 4
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
ITYPE = 5
ELSE
ITYPE = 6
END IF
C
C Quick return if possible.
C
IF( MIN( M, N ).EQ.0 )
$ RETURN
C
C Get machine parameters.
C
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
C
CFROMC = CFROM
CTOC = CTO
C
10 CONTINUE
CFROM1 = CFROMC*SMLNUM
CTO1 = CTOC / BIGNUM
IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
MUL = SMLNUM
DONE = .FALSE.
CFROMC = CFROM1
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
MUL = BIGNUM
DONE = .FALSE.
CTOC = CTO1
ELSE
MUL = CTOC / CFROMC
DONE = .TRUE.
END IF
C
NOBLC = NBL.EQ.0
C
IF( ITYPE.EQ.0 ) THEN
C
C Full matrix
C
DO 30 J = 1, N
DO 20 I = 1, M
A( I, J ) = A( I, J )*MUL
20 CONTINUE
30 CONTINUE
C
ELSE IF( ITYPE.EQ.1 ) THEN
C
IF ( NOBLC ) THEN
C
C Lower triangular matrix
C
DO 50 J = 1, N
DO 40 I = J, M
A( I, J ) = A( I, J )*MUL
40 CONTINUE
50 CONTINUE
C
ELSE
C
C Block lower triangular matrix
C
JFIN = 0
DO 80 K = 1, NBL
JINI = JFIN + 1
JFIN = JFIN + NROWS( K )
DO 70 J = JINI, JFIN
DO 60 I = JINI, M
A( I, J ) = A( I, J )*MUL
60 CONTINUE
70 CONTINUE
80 CONTINUE
END IF
C
ELSE IF( ITYPE.EQ.2 ) THEN
C
IF ( NOBLC ) THEN
C
C Upper triangular matrix
C
DO 100 J = 1, N
DO 90 I = 1, MIN( J, M )
A( I, J ) = A( I, J )*MUL
90 CONTINUE
100 CONTINUE
C
ELSE
C
C Block upper triangular matrix
C
JFIN = 0
DO 130 K = 1, NBL
JINI = JFIN + 1
JFIN = JFIN + NROWS( K )
IF ( K.EQ.NBL ) JFIN = N
DO 120 J = JINI, JFIN
DO 110 I = 1, MIN( JFIN, M )
A( I, J ) = A( I, J )*MUL
110 CONTINUE
120 CONTINUE
130 CONTINUE
END IF
C
ELSE IF( ITYPE.EQ.3 ) THEN
C
IF ( NOBLC ) THEN
C
C Upper Hessenberg matrix
C
DO 150 J = 1, N
DO 140 I = 1, MIN( J+1, M )
A( I, J ) = A( I, J )*MUL
140 CONTINUE
150 CONTINUE
C
ELSE
C
C Block upper Hessenberg matrix
C
JFIN = 0
DO 180 K = 1, NBL
JINI = JFIN + 1
JFIN = JFIN + NROWS( K )
C
IF ( K.EQ.NBL ) THEN
JFIN = N
IFIN = N
ELSE
IFIN = JFIN + NROWS( K+1 )
END IF
C
DO 170 J = JINI, JFIN
DO 160 I = 1, MIN( IFIN, M )
A( I, J ) = A( I, J )*MUL
160 CONTINUE
170 CONTINUE
180 CONTINUE
END IF
C
ELSE IF( ITYPE.EQ.4 ) THEN
C
C Lower half of a symmetric band matrix
C
K3 = KL + 1
K4 = N + 1
DO 200 J = 1, N
DO 190 I = 1, MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
190 CONTINUE
200 CONTINUE
C
ELSE IF( ITYPE.EQ.5 ) THEN
C
C Upper half of a symmetric band matrix
C
K1 = KU + 2
K3 = KU + 1
DO 220 J = 1, N
DO 210 I = MAX( K1-J, 1 ), K3
A( I, J ) = A( I, J )*MUL
210 CONTINUE
220 CONTINUE
C
ELSE IF( ITYPE.EQ.6 ) THEN
C
C Band matrix
C
K1 = KL + KU + 2
K2 = KL + 1
K3 = 2*KL + KU + 1
K4 = KL + KU + 1 + M
DO 240 J = 1, N
DO 230 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
230 CONTINUE
240 CONTINUE
C
END IF
C
IF( .NOT.DONE )
$ GO TO 10
C
RETURN
C *** Last line of MB01QD ***
END
|