1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
SUBROUTINE MB01PD( SCUN, TYPE, M, N, KL, KU, ANRM, NBL, NROWS, A,
$ LDA, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To scale a matrix or undo scaling. Scaling is performed, if
C necessary, so that the matrix norm will be in a safe range of
C representable numbers.
C
C ARGUMENTS
C
C Mode Parameters
C
C SCUN CHARACTER*1
C SCUN indicates the operation to be performed.
C = 'S': scale the matrix.
C = 'U': undo scaling of the matrix.
C
C TYPE CHARACTER*1
C TYPE indicates the storage type of the input matrix.
C = 'G': A is a full matrix.
C = 'L': A is a (block) lower triangular matrix.
C = 'U': A is an (block) upper triangular matrix.
C = 'H': A is an (block) upper Hessenberg matrix.
C = 'B': A is a symmetric band matrix with lower bandwidth
C KL and upper bandwidth KU and with the only the
C lower half stored.
C = 'Q': A is a symmetric band matrix with lower bandwidth
C KL and upper bandwidth KU and with the only the
C upper half stored.
C = 'Z': A is a band matrix with lower bandwidth KL and
C upper bandwidth KU.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C KL (input) INTEGER
C The lower bandwidth of A. Referenced only if TYPE = 'B',
C 'Q' or 'Z'.
C
C KU (input) INTEGER
C The upper bandwidth of A. Referenced only if TYPE = 'B',
C 'Q' or 'Z'.
C
C ANRM (input) DOUBLE PRECISION
C The norm of the initial matrix A. ANRM >= 0.
C When ANRM = 0 then an immediate return is effected.
C ANRM should be preserved between the call of the routine
C with SCUN = 'S' and the corresponding one with SCUN = 'U'.
C
C NBL (input) INTEGER
C The number of diagonal blocks of the matrix A, if it has a
C block structure. To specify that matrix A has no block
C structure, set NBL = 0. NBL >= 0.
C
C NROWS (input) INTEGER array, dimension max(1,NBL)
C NROWS(i) contains the number of rows and columns of the
C i-th diagonal block of matrix A. The sum of the values
C NROWS(i), for i = 1: NBL, should be equal to min(M,N).
C The elements of the array NROWS are not referenced if
C NBL = 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading M by N part of this array must
C contain the matrix to be scaled/unscaled.
C On exit, the leading M by N part of A will contain
C the modified matrix.
C The storage mode of A is specified by TYPE.
C
C LDA (input) INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C Error Indicator
C
C INFO (output) INTEGER
C = 0: successful exit
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Denote by ANRM the norm of the matrix, and by SMLNUM and BIGNUM,
C two positive numbers near the smallest and largest safely
C representable numbers, respectively. The matrix is scaled, if
C needed, such that the norm of the result is in the range
C [SMLNUM, BIGNUM]. The scaling factor is represented as a ratio
C of two numbers, one of them being ANRM, and the other one either
C SMLNUM or BIGNUM, depending on ANRM being less than SMLNUM or
C larger than BIGNUM, respectively. For undoing the scaling, the
C norm is again compared with SMLNUM or BIGNUM, and the reciprocal
C of the previous scaling factor is used.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER*1 SCUN, TYPE
INTEGER INFO, KL, KU, LDA, M, MN, N, NBL
DOUBLE PRECISION ANRM
C .. Array Arguments ..
INTEGER NROWS ( * )
DOUBLE PRECISION A( LDA, * )
C .. Local Scalars ..
LOGICAL FIRST, LSCALE
INTEGER I, ISUM, ITYPE
DOUBLE PRECISION BIGNUM, SMLNUM
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DLABAD, MB01QD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Save statement ..
SAVE BIGNUM, FIRST, SMLNUM
C .. Data statements ..
DATA FIRST/.TRUE./
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
LSCALE = LSAME( SCUN, 'S' )
IF( .NOT.LSCALE .AND. .NOT.LSAME( SCUN, 'U' ) ) THEN
INFO = -1
ELSE IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE IF( LSAME( TYPE, 'B' ) ) THEN
ITYPE = 4
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
ITYPE = 5
ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
ITYPE = 6
ELSE
ITYPE = -1
END IF
C
MN = MIN( M, N )
C
IF( NBL.GT.0 ) THEN
ISUM = 0
DO 10 I = 1, NBL
ISUM = ISUM + NROWS(I)
10 CONTINUE
END IF
C
IF( ITYPE.EQ.-1 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 .OR.
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. N.NE.M ) ) THEN
INFO = -4
ELSE IF( ANRM.LT.ZERO ) THEN
INFO = -7
ELSE IF( NBL.LT.0 ) THEN
INFO = -8
ELSE IF( NBL.GT.0 .AND. ISUM.NE.MN ) THEN
INFO = -9
ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( ITYPE.GE.4 ) THEN
IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
INFO = -5
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
$ THEN
INFO = -6
ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
$ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
$ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
INFO = -11
END IF
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB01PD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MN.EQ.0 .OR. ANRM.EQ.ZERO )
$ RETURN
C
IF ( FIRST ) THEN
C
C Get machine parameters.
C
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
FIRST = .FALSE.
END IF
C
IF ( LSCALE ) THEN
C
C Scale A, if its norm is outside range [SMLNUM,BIGNUM].
C
IF( ANRM.LT.SMLNUM ) THEN
C
C Scale matrix norm up to SMLNUM.
C
CALL MB01QD( TYPE, M, N, KL, KU, ANRM, SMLNUM, NBL, NROWS,
$ A, LDA, INFO )
ELSE IF( ANRM.GT.BIGNUM ) THEN
C
C Scale matrix norm down to BIGNUM.
C
CALL MB01QD( TYPE, M, N, KL, KU, ANRM, BIGNUM, NBL, NROWS,
$ A, LDA, INFO )
END IF
C
ELSE
C
C Undo scaling.
C
IF( ANRM.LT.SMLNUM ) THEN
CALL MB01QD( TYPE, M, N, KL, KU, SMLNUM, ANRM, NBL, NROWS,
$ A, LDA, INFO )
ELSE IF( ANRM.GT.BIGNUM ) THEN
CALL MB01QD( TYPE, M, N, KL, KU, BIGNUM, ANRM, NBL, NROWS,
$ A, LDA, INFO )
END IF
END IF
C
RETURN
C *** Last line of MB01PD ***
END
|